cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A169685 Decimal expansion of 2^521 - 1.

Original entry on oeis.org

6, 8, 6, 4, 7, 9, 7, 6, 6, 0, 1, 3, 0, 6, 0, 9, 7, 1, 4, 9, 8, 1, 9, 0, 0, 7, 9, 9, 0, 8, 1, 3, 9, 3, 2, 1, 7, 2, 6, 9, 4, 3, 5, 3, 0, 0, 1, 4, 3, 3, 0, 5, 4, 0, 9, 3, 9, 4, 4, 6, 3, 4, 5, 9, 1, 8, 5, 5, 4, 3, 1, 8, 3, 3, 9, 7, 6, 5, 6, 0, 5, 2, 1, 2, 2, 5, 5, 9, 6, 4, 0, 6, 6, 1, 4, 5, 4, 5, 5
Offset: 157

Views

Author

N. J. A. Sloane, Apr 13 2010

Keywords

Comments

The 13th Mersenne prime, A000668(13); 521 = A000043(13). - M. F. Hasler, Jan 09 2013

Examples

			686479766013060971498190079908139321726943530014330540939446345918\
554318339765605212255964066145455497729631139148085803712198799971\
6643812574028291115057151.
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

A169681 Decimal expansion of 2^127-1.

Original entry on oeis.org

1, 7, 0, 1, 4, 1, 1, 8, 3, 4, 6, 0, 4, 6, 9, 2, 3, 1, 7, 3, 1, 6, 8, 7, 3, 0, 3, 7, 1, 5, 8, 8, 4, 1, 0, 5, 7, 2, 7
Offset: 39

Views

Author

Vincenzo Librandi, Apr 12 2010

Keywords

Comments

The 12th Mersenne prime, A000668(12); 127 = A000043(12). Also, the fifth Catalan number A007013(4). - M. F. Hasler, Jan 09 2013

Examples

			170141183460469231731687303715884105727.
		

Crossrefs

Cf. A169684 = A000668(11), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

Formula

2^127-1 = 2^A000043(12)-1 = A000668(12). - M. F. Hasler, Jan 09 2013

Extensions

Edited by N. J. A. Sloane, Apr 13 2010

A204063 Decimal expansion of 2^607 - 1, the 14th Mersenne prime A000668(14).

Original entry on oeis.org

5, 3, 1, 1, 3, 7, 9, 9, 2, 8, 1, 6, 7, 6, 7, 0, 9, 8, 6, 8, 9, 5, 8, 8, 2, 0, 6, 5, 5, 2, 4, 6, 8, 6, 2, 7, 3, 2, 9, 5, 9, 3, 1, 1, 7, 7, 2, 7, 0, 3, 1, 9, 2, 3, 1, 9, 9, 4, 4, 4, 1, 3, 8, 2, 0, 0, 4, 0, 3, 5, 5, 9, 8, 6, 0, 8, 5, 2, 2, 4, 2, 7, 3, 9, 1, 6, 2, 5, 0, 2, 2, 6, 5, 2, 2, 9, 2, 8, 5, 6, 6, 8, 8, 8, 9
Offset: 183

Views

Author

M. F. Hasler, Jan 09 2013

Keywords

Examples

			2^607-1 = 531 * 10^180 +
137992816767098689588206552468627329593117727031923199444138 * 10^120 +
200403559860852242739162502265229285668889329486246501015346 * 10^60 +
579337652707239409519978766587351943831270835393219031728127.
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

Formula

2^A000043(14)-1.

A248931 Decimal expansion of 2^1279 - 1, the 15th Mersenne prime A000668(15).

Original entry on oeis.org

1, 0, 4, 0, 7, 9, 3, 2, 1, 9, 4, 6, 6, 4, 3, 9, 9, 0, 8, 1, 9, 2, 5, 2, 4, 0, 3, 2, 7, 3, 6, 4, 0, 8, 5, 5, 3, 8, 6, 1, 5, 2, 6, 2, 2, 4, 7, 2, 6, 6, 7, 0, 4, 8, 0, 5, 3, 1, 9, 1, 1, 2, 3, 5, 0, 4, 0, 3, 6, 0, 8, 0, 5, 9, 6, 7, 3, 3, 6, 0, 2, 9, 8, 0, 1, 2, 2, 3, 9, 4, 4, 1, 7, 3, 2, 3, 2, 4, 1, 8, 4, 8, 4, 2, 4
Offset: 386

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The 13th through the 17th Mersenne primes were found in 1952 by Raphael M. Robinson, using SWAC.

Examples

			10407932194664399081925240327364085538615262247266704805319112350403608...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^1279-1));
    
  • Mathematica
    RealDigits[2^1279 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^1279-1)))

Formula

Equals 2^A000043(15) - 1.

A248933 Decimal expansion of 2^2281 - 1, the 17th Mersenne prime A000668(17).

Original entry on oeis.org

4, 4, 6, 0, 8, 7, 5, 5, 7, 1, 8, 3, 7, 5, 8, 4, 2, 9, 5, 7, 1, 1, 5, 1, 7, 0, 6, 4, 0, 2, 1, 0, 1, 8, 0, 9, 8, 8, 6, 2, 0, 8, 6, 3, 2, 4, 1, 2, 8, 5, 9, 9, 0, 1, 1, 1, 1, 9, 9, 1, 2, 1, 9, 9, 6, 3, 4, 0, 4, 6, 8, 5, 7, 9, 2, 8, 2, 0, 4, 7, 3, 3, 6, 9, 1, 1, 2, 5, 4, 5, 2, 6, 9, 0, 0, 3, 9, 8, 9, 0, 2, 6, 1, 5, 3
Offset: 687

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The 13th through the 17th Mersenne primes were found in 1952 by Raphael M. Robinson, using SWAC.
The digits of this prime were published on page 167 of Nordisk Mathematisk Tidskrift 2 (1954).

Examples

			44608755718375842957115170640210180988620863241285990111199121996340468...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^2281-1));
    
  • Mathematica
    RealDigits[2^2281 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^2281-1)))

Formula

Equals 2^A000043(17) - 1.

A248934 Decimal expansion of 2^3217 - 1, the 18th Mersenne prime A000668(18).

Original entry on oeis.org

2, 5, 9, 1, 1, 7, 0, 8, 6, 0, 1, 3, 2, 0, 2, 6, 2, 7, 7, 7, 6, 2, 4, 6, 7, 6, 7, 9, 2, 2, 4, 4, 1, 5, 3, 0, 9, 4, 1, 8, 1, 8, 8, 8, 7, 5, 5, 3, 1, 2, 5, 4, 2, 7, 3, 0, 3, 9, 7, 4, 9, 2, 3, 1, 6, 1, 8, 7, 4, 0, 1, 9, 2, 6, 6, 5, 8, 6, 3, 6, 2, 0, 8, 6, 2, 0, 1, 2, 0, 9, 5, 1, 6, 8, 0, 0, 4, 8, 3, 4, 0, 6, 5, 5, 0
Offset: 969

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The prime was found on September 8, 1957, by Hans Riesel, using BESK.

Examples

			25911708601320262777624676792244153094181888755312542730397492316187401...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248935 = A000668(19), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^3217-1));
    
  • Mathematica
    RealDigits[2^3217 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^3217-1)))

Formula

Equals 2^A000043(18) - 1.

A248935 Decimal expansion of 2^4253 - 1, the 19th Mersenne prime A000668(19).

Original entry on oeis.org

1, 9, 0, 7, 9, 7, 0, 0, 7, 5, 2, 4, 4, 3, 9, 0, 7, 3, 8, 0, 7, 4, 6, 8, 0, 4, 2, 9, 6, 9, 5, 2, 9, 1, 7, 3, 6, 6, 9, 3, 5, 6, 9, 9, 4, 7, 4, 9, 9, 4, 0, 1, 7, 7, 3, 9, 4, 7, 4, 1, 8, 8, 2, 6, 7, 3, 5, 2, 8, 9, 7, 9, 7, 8, 7, 0, 0, 5, 0, 5, 3, 7, 0, 6, 3, 6, 8, 0, 4, 9, 8, 3, 5, 5, 1, 4, 9, 0, 0, 2, 4, 4, 3, 0, 3
Offset: 1281

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

This prime and the 20th Mersenne prime were found in 1961 by Alexander Hurwitz, using IBM 7090.

Examples

			19079700752443907380746804296952917366935699474994017739474188267352897...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^4253-1));
    
  • Mathematica
    RealDigits[2^4253 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^4253-1)))

Formula

Equals 2^A000043(19) - 1.

A248936 Decimal expansion of 2^4423 - 1, the 20th Mersenne prime A000668(20).

Original entry on oeis.org

2, 8, 5, 5, 4, 2, 5, 4, 2, 2, 2, 8, 2, 7, 9, 6, 1, 3, 9, 0, 1, 5, 6, 3, 5, 6, 6, 1, 0, 2, 1, 6, 4, 0, 0, 8, 3, 2, 6, 1, 6, 4, 2, 3, 8, 6, 4, 4, 7, 0, 2, 8, 8, 9, 1, 9, 9, 2, 4, 7, 4, 5, 6, 6, 0, 2, 2, 8, 4, 4, 0, 0, 3, 9, 0, 6, 0, 0, 6, 5, 3, 8, 7, 5, 9, 5, 4, 5, 7, 1, 5, 0, 5, 5, 3, 9, 8, 4, 3, 2, 3, 9, 7, 5, 4
Offset: 1332

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The 19th Mersenne prime and this prime were found in 1961 by Alexander Hurwitz, using IBM 7090.

Examples

			28554254222827961390156356610216400832616423864470288919924745660228440...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19).

Programs

  • Magma
    Reverse(Intseq(2^4423-1));
    
  • Mathematica
    RealDigits[2^4423 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^4423-1)))

Formula

Equals 2^A000043(20) - 1.

A169684 Decimal expansion of 2^107 - 1.

Original entry on oeis.org

1, 6, 2, 2, 5, 9, 2, 7, 6, 8, 2, 9, 2, 1, 3, 3, 6, 3, 3, 9, 1, 5, 7, 8, 0, 1, 0, 2, 8, 8, 1, 2, 7
Offset: 33

Views

Author

N. J. A. Sloane, Apr 13 2010

Keywords

Comments

The 11th Mersenne prime A000668(11), see also the formula, and A134731, A169681, A169685 for the next three terms in that sequence. - M. F. Hasler, Jan 09 2013

Examples

			162259276829213363391578010288127.
		

Crossrefs

Cf. A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^107-1)); // Arkadiusz Wesolowski, Oct 18 2014
    
  • Mathematica
    IntegerDigits[2^107-1] (* Paolo Xausa, Oct 07 2023 *)
  • PARI
    eval(Vec(Str(2^107-1))) \\ or simply: digits(2^107-1) in PARI version 2.6+. - M. F. Hasler, Jan 09 2013

Formula

2^107 - 1 = 2^A000043(11) - 1 = A000668(11). - M. F. Hasler, Jan 09 2013

A275977 Decimal expansion of 2^9689 - 1, the 21st Mersenne prime A000668(21).

Original entry on oeis.org

4, 7, 8, 2, 2, 0, 2, 7, 8, 8, 0, 5, 4, 6, 1, 2, 0, 2, 9, 5, 2, 8, 3, 9, 2, 9, 8, 6, 6, 0, 0, 0, 5, 9, 0, 9, 7, 4, 1, 4, 9, 7, 1, 7, 2, 4, 0, 2, 2, 3, 6, 5, 0, 0, 8, 5, 1, 3, 3, 4, 5, 1, 0, 9, 9, 1, 8, 3, 7, 8, 9, 5, 0, 9, 4, 2, 6, 6, 2, 9, 7, 0, 2, 7, 8, 9, 2, 7, 6, 8, 6, 1, 1, 2, 7, 0, 7, 8, 9, 4, 5, 8, 6, 8, 2
Offset: 2917

Views

Author

Arkadiusz Wesolowski, Aug 15 2016

Keywords

Examples

			47822027880546120295283929866000590974149717240223650085133451099183789...
		

Crossrefs

Programs

  • Magma
    Reverse(Intseq(2^9689-1))[1..105];
    
  • Mathematica
    First@RealDigits@N[2^9689 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
    RealDigits[2^MersennePrimeExponent[21]-1,10,120][[1]] (* Harvey P. Dale, Aug 14 2025 *)
  • PARI
    eval(Vec(Str(2^9689-1)))[1..105]

Formula

2^A000043(21) - 1.
Showing 1-10 of 19 results. Next