A254576 Primes p such that phi(p-2) divides p-1 where phi is Euler's totient function (A000010).
3, 5, 17, 257, 65537, 83623937
Offset: 1
Programs
-
Magma
[n: n in [3..10000000] | IsPrime(n) and (n-1) mod EulerPhi(n-2) eq 0];
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[n: n in [3..10000000] | IsPrime(n) and (n-1) mod EulerPhi(n-2) eq 0];
17 is in this sequence because 17 = tau(17)*phi(15) + 1 = 2*8 + 1.
[n: n in [3..1000000] | n eq NumberOfDivisors(n) * EulerPhi(n-2) + 1];
Select[Range@ 100000, # == DivisorSigma[0, #] EulerPhi[# - 2] + 1 &] (* Michael De Vlieger, Oct 27 2015 *)
for(n=3, 1e8, if(numdiv(n)*eulerphi(n-2) == n-1, print1(n ", "))) \\ Altug Alkan, Oct 28 2015
lista(na, nb) = {my(f1 = factor(na-2), f2 = factor(na-1), f3); for(n=na, nb, f3 = factor(n); if (numdiv(f3)*eulerphi(f1) == n-1, print1(n ", ")); f1 = f2; f2 = f3;);}; \\ Michel Marcus, Feb 21 2020
Comments