A249541
Numbers m such that phi(m-2) divides m-1 where phi is Euler's totient function (A000010).
Original entry on oeis.org
3, 4, 5, 17, 257, 65537, 83623937, 4294967297, 6992962672132097
Offset: 1
4 is in the sequence because phi(4-2) = 1 divides 4-1 = 3.
A263810
Numbers k such that k = tau(k) * phi(k-2) + 1.
Original entry on oeis.org
3, 4, 5, 17, 257, 65537, 83623937
Offset: 1
17 is in this sequence because 17 = tau(17)*phi(15) + 1 = 2*8 + 1.
Cf.
A263811 (numbers k such that k = tau(k) * phi(k-1) + 1).
-
[n: n in [3..1000000] | n eq NumberOfDivisors(n) * EulerPhi(n-2) + 1];
-
Select[Range@ 100000, # == DivisorSigma[0, #] EulerPhi[# - 2] + 1 &] (* Michael De Vlieger, Oct 27 2015 *)
-
for(n=3, 1e8, if(numdiv(n)*eulerphi(n-2) == n-1, print1(n ", "))) \\ Altug Alkan, Oct 28 2015
-
lista(na, nb) = {my(f1 = factor(na-2), f2 = factor(na-1), f3); for(n=na, nb, f3 = factor(n); if (numdiv(f3)*eulerphi(f1) == n-1, print1(n ", ")); f1 = f2; f2 = f3;);}; \\ Michel Marcus, Feb 21 2020
Showing 1-2 of 2 results.
Comments