A249862 A special solution of X(n)^2 - 280*Y(n)^2 = 3^(2*n), n >= 0; here the X member.
1, 17, 569, 19193, 647441, 21840257, 736741769, 24852657833, 838359690401, 28280555553137, 953993651593049, 32181259154185433, 1085576868377967281, 36619982192463218657, 1235309202728347728809, 41670933053031653811593, 1405693940978521100034881
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..650
- Index entries for linear recurrences with constant coefficients, signature (34,-9).
Programs
-
Magma
I:=[1,17]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
-
Mathematica
CoefficientList[Series[(1 - 17 x) / (1 - 34 x + 9 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *) LinearRecurrence[{34,-9},{1,17},30] (* Harvey P. Dale, Dec 13 2016 *)
-
PARI
x='x+O('x^30); Vec((1 - 17*x)/(1 - 34*x + 9*x^2)) \\ G. C. Greubel, Dec 20 2017
Formula
a(n) = 3^(n-1)*(3*S(n, 34/3) - 17*S(n-1, 34/3)), n >= 0, with the scaled Chebyshev S sequence 3^n*S(n, 34/3) given in A248163.
O.g.f.: (1 - 17*x)/(1 - 34*x + 9*x^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(0) = 0, a(1) = 17.
E.g.f.: exp(17*x)*cosh(2*sqrt(70)*x). - Stefano Spezia, Mar 24 2023
Comments