cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A005032.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the larger sagitta has length 7/5. The input, besides the unit circle C, is the circle C_0 with radius R_0 = 7/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n).
If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 3/5), the rational sequence would be A249458/A169634. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the larger segment see a comment under A249862. C_n = (5/7)*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 07 2014

Crossrefs

Programs

  • Magma
    I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023

Extensions

Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023

A248163 Chebyshev's S polynomials (A049310) evaluated at 34/3 and multiplied by powers of 3 (A000244).

Original entry on oeis.org

1, 34, 1147, 38692, 1305205, 44028742, 1485230383, 50101574344, 1690086454249, 57012025275370, 1923198081274339, 64875626535849196, 2188462519487403613, 73823845023749080078, 2490314568132082090135, 84006280711277049343888, 2833800713070230938880977, 95593167717986358477858226
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2014

Keywords

Comments

This sequence appears in the solution for the curvature sequence of the touching circle and chord example given in A249457. See also the pair A249862(n) and a(n-1), with a(-1) = 0, for which details are given in A249862.

Crossrefs

Programs

  • Magma
    I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
    
  • Mathematica
    CoefficientList[Series[1/(1-34 x +(3 x)^2), {x,0,40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
    Table[3^n*ChebyshevU[n,17/3], {n,0,40}] (* G. C. Greubel, May 31 2025 *)
  • PARI
    a(n) = 3^n*polchebyshev(n, 2, 17/3); \\ Michel Marcus, May 31 2025
  • SageMath
    def A248163(n): return 3^n*chebyshev_U(n,17/3)
    print([A248163(n) for n in range(41)]) # G. C. Greubel, May 31 2025
    

Formula

a(n) = 3^n*S(n, 34/3) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 34*x + 9*x^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(-1) = 0, a(0) = 1 .
E.g.f.: exp(17*x)*(140*cosh(2*sqrt(70)*x) + 17*sqrt(70)*sinh(2*sqrt(70)*x))/140. - Stefano Spezia, Mar 24 2023

Extensions

a(16)-a(17) from Stefano Spezia, Mar 24 2023
Showing 1-2 of 2 results.