A261276 100-gonal numbers: a(n) = 98*n*(n-1)/2 + n.
0, 1, 100, 297, 592, 985, 1476, 2065, 2752, 3537, 4420, 5401, 6480, 7657, 8932, 10305, 11776, 13345, 15012, 16777, 18640, 20601, 22660, 24817, 27072, 29425, 31876, 34425, 37072, 39817, 42660, 45601, 48640, 51777, 55012, 58345, 61776, 65305, 68932, 72657, 76480
Offset: 0
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
A261276:=List([0..10^2],n->(98*n*(n-1))/2 + n); # Muniru A Asiru, Sep 27 2017
-
JavaScript
function a(n){return 98*n*(n-1)/2+n}
-
Maple
A261276:=seq((98*n*(n-1))/2 + n,n=0..10^2); # Muniru A Asiru, Sep 27 2017
-
Mathematica
Table[n (49 n - 48), {n, 0, 40}] (* Bruno Berselli, Aug 20 2015 *) PolygonalNumber[100,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,100},50] (* Harvey P. Dale, Jan 04 2019 *)
-
PARI
first(m)=vector(m,i,i--;98*i*(i-1)/2 + i) \\ Anders Hellström, Aug 20 2015
Formula
a(n) = n*(49*n - 48).
G.f.: x*(1+97*x)/(1-x)^3. [Bruno Berselli, Aug 20 2015]
E.g.f.: exp(x)*(x + 49*x^2). - Nikolaos Pantelidis, Feb 12 2023
Comments