A250292 Numbers k such that Pell(k) is a semiprime.
7, 9, 17, 19, 23, 43, 47, 67, 73, 83, 103, 109, 139, 149, 157, 173, 179, 223, 239, 281, 311, 313, 349, 431, 557, 569, 577, 587
Offset: 1
Examples
17 is a term since Pell(17) = 1136689 = 137 * 8297 is a semiprime.
Links
- FactorDB, Status of Pell(709).
- FactorDB, Status of Pell(787).
Programs
-
Maple
pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember): filter:= proc(n) local F,f; F:= ifactors(pell(n),easy)[2]; if add(f[2],f=F) > 2 then return false fi; if hastype(F,symbol) then if add(f[2],f=F) >= 2 then return false fi; else return evalb(add(f[2],f=F)=2) fi; F:= ifactors(pell(n))[2]; evalb(add(f[2],f=F)=2) end proc: select(filter, [$1..230]); # Robert Israel, Jan 18 2016
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2]; Select[Range[0, 160], PrimeOmega@ a@ # == 2 &] (* Michael De Vlieger, Jan 19 2016 *)
Extensions
a(22)-a(23) from Daniel M. Jensen, Jan 18 2016
a(24) from Arkadiusz Wesolowski, Jan 19 2016
a(25)-a(27) from Sean A. Irvine, Jul 17 2017
a(28) from Sean A. Irvine, Jan 24 2018
Comments