A250404 Numbers k such that the set of all distinct values of phi of all divisors of k equals the set of all proper divisors of k+1 where phi is the Euler totient function (A000010).
1, 2, 3, 15, 255, 65535, 4294967295
Offset: 1
Examples
2 is a term since {phi(d) : d|2} = {1} = {d; d|2, d<2}. 15 is a term since {phi(d) : d|15} = {1, 2, 4, 8} = {d : d|16, d<16}.
Programs
-
Magma
[n: n in [1..100000] | Set([EulerPhi(d): d in Divisors(n)]) eq Set([d: d in Divisors(n+1) | d lt n+1 ])]
-
PARI
isok(n) = {sphi = []; fordiv(n, d, sphi = Set(concat(sphi, eulerphi(d)))); sphi == setminus(Set(divisors(n+1)), Set(n+1));} \\ Michel Marcus, Nov 23 2014
Extensions
Edited and a(7) added by Max Alekseyev, May 04 2024
Comments