A098037 Number of prime divisors, counted with multiplicity, of the sum of two consecutive primes.
1, 3, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 7, 3, 6, 4, 5, 3, 3, 4, 4, 4, 6, 3, 6, 3, 3, 4, 7, 5, 4, 7, 4, 4, 6, 6, 4, 8, 4, 5, 3, 3, 5, 5, 4, 4, 7, 4, 3, 5, 4, 6, 3, 4, 4, 8, 6, 3, 6, 5, 7, 3, 5, 5, 5, 4, 4, 4, 5, 3, 3, 3, 4, 6, 5, 6, 4, 8, 4, 5, 3, 3, 5, 5, 4, 3, 4, 3, 5, 3, 4, 3, 5, 5, 7, 6, 7, 3, 5, 4
Offset: 1
Examples
Prime(2) + prime(3) = 2*2*2, 3 factors, the second term in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A098037 := proc(n) ithprime(n)+ithprime(n+1) ; numtheory[bigomega](%) ; end proc: seq(A098037(n),n=1..40) ; # R. J. Mathar, Jan 20 2025
-
Mathematica
PrimeOmega[Total[#]]&/@Partition[Prime[Range[110]],2,1] (* Harvey P. Dale, Jun 14 2011 *)
-
PARI
b(n) = for(x=1,n,y1=(prime(x)+prime(x+1));print1(bigomega(y1)","))
Formula
Extensions
Definition corrected by Andrew S. Plewe, Apr 08 2007
Comments