cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A253644 Numbers n such that n^k is zeroless for k=0,...,5.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 17, 23, 24, 26, 31, 58, 62, 66, 68, 72, 76, 88, 96, 137, 168, 188, 233, 244, 262, 264, 296, 337, 376, 382, 383, 483, 488, 511, 514, 518, 519, 582, 628, 719, 736, 786, 816, 822, 928, 938, 971, 978, 1122, 1178, 1291, 1331, 1392, 1413, 1414, 1663, 1777
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

A subsequence of A252484 (analog for k <= 4) which contains A253647 (analog including k = 6) as a subsequence. Primes in this sequence are listed in A253645.
Conjectured to be finite.

Crossrefs

Programs

  • Maple
    filter:= proc(x)
      local k;
      for k from 1 to 5 do
        if has(convert(x^k,base,10),0) then return false fi
      od:
      true
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 07 2015
  • Mathematica
    Select[Range[2000],Count[Flatten[IntegerDigits/@(#^Range[5])],0]==0&] (* Harvey P. Dale, Jun 10 2017 *)
  • PARI
    is_A253644(n,K=5)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A156954 Integers N such that by inserting + or - or * or / or ^ between each of their digits, without any grouping parentheses, you can get N (the ambiguous a^b^c is avoided).

Original entry on oeis.org

736, 2592, 11664, 15617, 15618, 15622, 15624, 15632, 15642, 15645, 15656, 15662, 15667, 15698, 17536, 27639, 32785, 39363, 39369, 45947, 46633, 46644, 46648, 46655, 46660, 46663, 117635, 117638, 117639, 117642, 117643, 117647, 117650
Offset: 1

Views

Author

Jean-Marc Falcoz, Feb 19 2009

Keywords

Comments

The single-digit numbers 0, ..., 9 are here excluded by convention although they also ("voidly") satisfy the definition and therefore logically should be terms of this sequence. This is in contrast to the Friedman numbers A036057 where the construction also allows concatenation of digits but then of course has to exclude the case where only concatenation of the digits is used, which excludes the single-digit terms. - M. F. Hasler, Jan 07 2015
A subset of the orderly Friedman numbers A080035. - M. F. Hasler, Jan 04 2015

Examples

			736 = 7 + 3^6.
2592 = 2^5*9^2.
11664 = 1*1*6^6/4.
15617 = 1*5^6 - 1 - 7.
For more examples, see the link to "decompositions".
		

Crossrefs

Programs

  • PARI
    is(n,o=Vecsmall("*+-^/"))={v=Vecsmall(Str(n,n\10)); forstep(i=#v,3,-2,v[i]=v[i\2+1]); n>9 && forvec(s=vector(#v\2,i,[1,#o-(v[i*2+1]==48)]), for(i=1,#s,94==(v[2*i]=o[s[i]])&&i>1&&s[i-1]==4&&next(2));n==eval(Strchr(v))&&return(1))}

Extensions

Edited by M. F. Hasler, Jan 04 2015

A253643 Numbers n such that n^k is zeroless for k=0,...,3.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 35, 36, 38, 39, 41, 44, 46, 54, 56, 57, 58, 61, 62, 65, 66, 68, 72, 75, 76, 77, 81, 82, 83, 85, 88, 91, 92, 96, 111, 113, 114, 119, 121, 122, 125, 129, 132, 133, 136, 137, 139, 146, 154, 156, 157, 158, 161
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A252484 for the subsequence of numbers having this property up to k=4.

Crossrefs

Cf. A052382, A252484 (k <= 4), A253644 (k <= 5), A253645 (primes, k <= 5), A253647 (k <= 6), A253646 (primes, k <= 6), A124648 (k <= 7), A124649 (k <= 8).
Cf. A104264.

Programs

  • Mathematica
    Select[Range[200],AllTrue[#^Range[3],DigitCount[#,10,0]==0&]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 15 2015 *)
  • PARI
    is_A253643(n,K=3)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)
    
  • Python
    for n in range(100):
      s1,s2,s3 = str(n),str(n**2),str(n**3)
      if s1.find('0') + s2.find('0') + s3.find('0') == -3:
        print(n,end=', ') # Derek Orr, Mar 09 2015

A358340 a(n) is the smallest n-digit number whose fourth power is zeroless.

Original entry on oeis.org

1, 11, 104, 1027, 10267, 102674, 1026708, 10266908, 102669076, 1026690113, 10266901031, 102669009704, 1026690096087, 10266900960914, 102669009608176, 1026690096080369, 10266900960803447, 102669009608034434, 1026690096080341627, 10266900960803409734, 102669009608034097731, 1026690096080340972491
Offset: 1

Views

Author

Mohammed Yaseen, Nov 10 2022

Keywords

Comments

It has been proved that there exist infinitely many zeroless squares and cubes but there is apparently no proof for 4th powers, 5th powers, etc.
This sequence approaches the decimal expansion of 9000^(-1/4). Similar sequences of other small powers k seem to approach the decimal expansion of (9*10^(k-1))^(-1/k).

Crossrefs

Programs

  • PARI
    a(n) = my(x=10^(n-1)); while(! vecmin(digits(x^4)), x++); x; \\ Michel Marcus, Nov 10 2022
    
  • PARI
    a(n) = { my(s = sqrtnint(10^(4*n - 3) \ 9, 4)); for(i = s, oo, c = i^4; if(vecmin(digits(c)) > 0, return(i) ) ) } \\ David A. Corneth, Nov 10 2022
  • Python
    from itertools import count
    from sympy import integer_nthroot
    def a(n):
        start = integer_nthroot(int("1"*(4*(n-1)+1)), 4)[0]
        return next(i for i in count(start) if "0" not in str(i**4))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 10 2022
    

Formula

a(n) ~ 10^(n + 1/4) / sqrt(3).

Extensions

More terms from David A. Corneth, Nov 10 2022
Showing 1-4 of 4 results.