cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A252484 Numbers m such that m^k is zeroless for k=1,...,4.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 17, 21, 23, 24, 26, 27, 28, 31, 36, 39, 41, 46, 56, 58, 61, 62, 66, 68, 72, 76, 82, 83, 88, 91, 92, 96, 121, 122, 129, 137, 146, 154, 161, 162, 166, 167, 168, 183, 186, 188, 189, 211, 231, 233, 244, 256, 262, 264, 268, 277, 278, 289, 296, 337, 373, 374, 376, 382, 383
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

See A253110 for the primes in this sequence. See A253644 for the subsequence including k=5.

Crossrefs

Cf. A052382, A253643 (k <= 3), A253644 (k <= 5), A253645 (primes, k <= 5), A253647 (k <= 6), A253646 (primes, k <= 6), A124648 (k <= 7), A124649 (k <= 8).
Cf. A104264.

Programs

  • Maple
    filter:= proc(n)
    local j;
    for j from 0 to 4 do
      if has(convert(n^j,base,10),0) then return false fi
    od:
    true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 15 2015
  • Mathematica
    Select[Range[400],Union[DigitCount[#^Range[4],10,0]]=={0}&] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    is_A252484(n,K=4)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A358340 a(n) is the smallest n-digit number whose fourth power is zeroless.

Original entry on oeis.org

1, 11, 104, 1027, 10267, 102674, 1026708, 10266908, 102669076, 1026690113, 10266901031, 102669009704, 1026690096087, 10266900960914, 102669009608176, 1026690096080369, 10266900960803447, 102669009608034434, 1026690096080341627, 10266900960803409734, 102669009608034097731, 1026690096080340972491
Offset: 1

Views

Author

Mohammed Yaseen, Nov 10 2022

Keywords

Comments

It has been proved that there exist infinitely many zeroless squares and cubes but there is apparently no proof for 4th powers, 5th powers, etc.
This sequence approaches the decimal expansion of 9000^(-1/4). Similar sequences of other small powers k seem to approach the decimal expansion of (9*10^(k-1))^(-1/k).

Crossrefs

Programs

  • PARI
    a(n) = my(x=10^(n-1)); while(! vecmin(digits(x^4)), x++); x; \\ Michel Marcus, Nov 10 2022
    
  • PARI
    a(n) = { my(s = sqrtnint(10^(4*n - 3) \ 9, 4)); for(i = s, oo, c = i^4; if(vecmin(digits(c)) > 0, return(i) ) ) } \\ David A. Corneth, Nov 10 2022
  • Python
    from itertools import count
    from sympy import integer_nthroot
    def a(n):
        start = integer_nthroot(int("1"*(4*(n-1)+1)), 4)[0]
        return next(i for i in count(start) if "0" not in str(i**4))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 10 2022
    

Formula

a(n) ~ 10^(n + 1/4) / sqrt(3).

Extensions

More terms from David A. Corneth, Nov 10 2022
Showing 1-2 of 2 results.