A252505 Number of biquadratefree (4th power free) divisors of n.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 9
Offset: 1
Examples
a(16) = 4 because there are 4 divisors of 16 that are 4th power free: 1,2,4,8. a(16) = 4 because there are 4 divisors d of 16 such that the greatest common square divisor of d and 16/d is 1: 1,2,8,16.
References
- Paul J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, page 37, Exercise 1.27.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Jon Maiga, Computer-generated formulas for A252505, Sequence Machine.
- Eric Weisstein's World of Mathematics, Biquadratefree.
Programs
-
Mathematica
Prepend[Table[Apply[Times, (FactorInteger[n][[All, 2]] /. x_ /; x > 3 -> 3) + 1], {n, 2, 100}], 1]
-
PARI
isA046100(n) = (n==1) || vecmax(factor(n)[, 2])<4; a(n) = {d = divisors(n); sum(i=1, #d, isA046100(d[i]));} \\ Michel Marcus, Mar 22 2015
-
PARI
a(n) = vecprod(apply(x->min(x, 3) + 1, factor(n)[, 2])); \\ Amiram Eldar, Aug 25 2023
Formula
Dirichlet g.f.: zeta(s)^2/zeta(4*s).
Sum_{k=1..n} a(k) ~ 90*n/Pi^4 * (log(n) - 1 + 2*gamma - 360*zeta'(4)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} mu(gcd(d, n/d))^2. - Ilya Gutkovskiy, Feb 21 2020
Multiplicative with a(p^e) = min(e, 3) + 1. - Amiram Eldar, Sep 19 2020
From Antti Karttunen, May 14 2025: (Start)
Following formulas have been generated for this sequence by Sequence Machine:
a(n) = Sum_{d|n} A307430(d).
(End)
Comments