cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A383156 The sum of the maximum exponents in the prime factorizations of the divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 7, 1, 3, 3, 10, 1, 7, 1, 7, 3, 3, 1, 13, 3, 3, 6, 7, 1, 7, 1, 15, 3, 3, 3, 13, 1, 3, 3, 13, 1, 7, 1, 7, 7, 3, 1, 21, 3, 7, 3, 7, 1, 13, 3, 13, 3, 3, 1, 15, 1, 3, 7, 21, 3, 7, 1, 7, 3, 7, 1, 22, 1, 3, 7, 7, 3, 7, 1, 21, 10, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2025

Keywords

Comments

Inverse Möbius transform of A051903.
a(n) depends only on the prime signature of n (A118914).

Examples

			4 has 3 divisors: 1, 2 = 2^1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0, 1 and 2, respectively. Therefore, a(4) = 0 + 1 + 2 = 3.
12 has 6 divisors: 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2 * 3 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 1, 2, 1 and 2, respectively. Therefore, a(12) = 0 + 1 + 1 + 2 + 1 + 2 = 7.
		

Crossrefs

Programs

  • Mathematica
    emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := DivisorSum[n, emax[#] &]; Array[a, 100]
    (* second program: *)
    a[n_] := If[n == 1, 0, Module[{e = FactorInteger[n][[;; , 2]], emax, v}, emax = Max[e]; v = Table[Times @@ (Min[# + 1, k + 1] & /@ e), {k, 1, emax}]; v[[1]] + Sum[k*(v[[k]] - v[[k - 1]]), {k, 2, emax}] - 1]]; Array[a, 100]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = sumdiv(n, d, emax(d));
    
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[, 2], emax = vecmax(e), v); v = vector(emax, k, vecprod(apply(x ->min(x+1 , k+1), e))); v[1] + sum(k = 2, emax, k * (v[k]-v[k-1])) - 1);

Formula

a(n) = Sum_{d|n} A051903(d).
a(n) = A000005(n) * A383157(n)/A383158(n).
a(p^e) = e*(e+1)/2 for prime p and e >= 0. In particular, a(p) = 1 for prime p.
a(n) = 2^omega(n) - 1 = A309307(n) if n is squarefree (A005117).
a(n) = tau(n, 2) - 1 + Sum_{k=2..A051903(n)} k * (tau(n, k+1) - tau(n, k)), where tau(n, k) is the number of k-free divisors of n (k-free numbers are numbers that are not divisible by a k-th power other than 1). For a given k >= 2, tau(n, k) is a multiplicative function with tau(p^e, k) = min(e+1, k). E.g., tau(n, 2) = A034444(n), tau(n, 3) = A073184(n), and tau(n, 4) = A252505(n).
Sum_{k=1..n} a(k) ~ c_1 * n * log(n) + c_2 * n, where c_1 is Niven's constant (A033150), c_2 = -1 + (2*gamma - 1)*c_1 - 2*zeta'(2)/zeta(2)^2 - Sum_{k>=3} (k-1) * (k*zeta'(k)/zeta(k)^2 - (k-1)*zeta'(k-1)/zeta(k-1)^2) = -2.37613633493572231366..., and gamma is Euler's constant (A001620).

A365680 The number of exponentially squarefree divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 5, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Comments

First differs from A252505 at n = 32.
The number of divisors of n that are exponentially squarefree numbers (A209061), i.e., numbers having only squarefree exponents in their canonical prime factorization.
The sum of these divisors is A365682(n) and the largest of them is A365683(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Count[Range[e], ?SquareFreeQ] + 1; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sum(k=1, n, issquarefree(k)) + 1;
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A013928(e+1) + 1.
a(n) <= A000005(n), with equality if and only if n is a biquadratefree number (A046100).

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A365173 The number of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

First differs from A252505 at n = 64.
The sum of these divisors is A365174(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 5)/4] + Floor[(e + 6)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+5)\4 + (x+6)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X^2 - X^4)/((1 - X)^2*(1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e+5)/4) + floor((e+6)/4) = A004524(e+5).
a(n) <= A000005(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) >= A034444(n), with equality if and only if n is squarefree (A005117).
a(n) == 1 (mod 2) if and only if n is a square of an exponentially odd number (i.e., a number whose prime factorization include only exponents e such that e == 2 (mod 4)).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2*(1 + p^2))) = 0.937494282731300250789438325050116436995101826036120273493270589183132928...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 2) * log(p) / (p^6 + 2*p^4 - 1) = f(1) * 0.192452062257404507109731932640803706644036700262364333369815000973104583...
and gamma is the Euler-Mascheroni constant A001620. (End)

A378214 Dirichlet inverse of A369255, where A369255(n) = A140773(n) mod 2.

Original entry on oeis.org

1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, -1, 0, 2, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, -1, 0, 2, -1, -1, -1, 0, 0, 2, -1, 0, -1, -1, -1, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2024

Keywords

Crossrefs

Cf. A140773, A369255, A378213, A378215 (parity of terms).
Cf. also conjectured formula in A252505.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA369255(n/d) * a(d).

A377140 Numbers that have more biquadratefree divisors than any smaller number.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 60, 120, 180, 360, 840, 1260, 2520, 6300, 7560, 12600, 27720, 69300, 83160, 138600, 360360, 900900, 1081080, 1801800, 5405400, 12612600, 18378360, 30630600, 91891800, 214414200, 349188840, 581981400, 1745944200, 4073869800, 8031343320, 12221609400
Offset: 1

Views

Author

Amiram Eldar, Oct 17 2024

Keywords

Comments

First differ from A365681 at n = 22.
Indices of records in A252505.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, ... (see the link for more values).

Crossrefs

Subsequence of A046100 and A025487.

Programs

  • Mathematica
    f[p_, e_] := Min[e, 3] + 1; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; With[{v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq]

A332712 a(n) = Sum_{d|n} mu(d/gcd(d, n/d)).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2020

Keywords

Crossrefs

Cf. A001222, A001694 (positions of nonzero terms), A005361, A007427, A008683, A008836, A028242, A052485 (positions of 0's), A062838 (positions of 1's), A112526, A252505, A322483, A332685, A332713.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 100}]
    A005361[n_] := Times @@ (#[[2]] & /@ FactorInteger[n]); a[n_] := Sum[(-1)^PrimeOmega[n/d] A005361[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    f[p_, e_] := 3*Floor[e/2] - e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020

Formula

Dirichlet g.f.: zeta(2*s)^2 * zeta(3*s) / zeta(6*s).
a(n) = Sum_{d|n} mu(lcm(d, n/d)/d).
a(n) = Sum_{d|n} (-1)^bigomega(n/d) * A005361(d).
a(n) = Sum_{d|n} A010052(n/d) * A112526(d).
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)*log(n)/(2*zeta(3)) + ((2*gamma - 1)*zeta(3/2) + 3*zeta'(3/2)/2 - 3*zeta(3/2)*zeta'(3)/zeta(3)) * sqrt(n)/zeta(3) + 6*zeta(2/3)^2 * n^(1/3)/Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 21 2020
Multiplicative with a(p^e) = A028242(e). - Amiram Eldar, Nov 30 2020

A365170 The sum of divisors d of n such that gcd(d, n/d) is squarefree.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 99, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The number of these divisors is A252505(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[e, 1, 1 + p, 2, 1 + p + p^2, , (1 + p)*(1 + p^(e - 1))]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p , e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e == 1, 1 + p, if(e == 2, 1 + p + p^2, (1 + p)*(1 + p^(e - 1)))));}

Formula

Multiplicative with a(p) = 1 + p, a(p^2) = 1 + p + p^2, and a(p^e) = (1 + p)*(1 + p^(e - 1)) if e >= 3.
a(n) >= A034448(n), with equality if and only if n is squarefree number (A005117).
a(n) <= A000203(n), with equality if and only if n is biquadratefree number (A046100).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 315/(4*Pi^4) = A157292 / 2 = 0.808446... .
Showing 1-8 of 8 results.