A253186 Number of connected unlabeled loopless multigraphs with 3 vertices and n edges.
0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330
Offset: 0
Examples
On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}.
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
- Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG], 2017; see Section 5.3.
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k = 2.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,2,2}.]
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Eq. (23).
- Gordon Royle, Small Multigraphs.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Programs
-
Magma
[Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015
-
Mathematica
CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *) a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *)
-
Sage
[floor(n/2) + floor((n^2 + 6)/12) for n in range(70)]
Comments