cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062381 Let A_n be the n X n matrix defined by A_n[i,j] = 1/F(i+j-1) for 1<=i,j<=n where F(k) is the k-th Fibonacci number (A000045). Then a_n = 1/det(A_n).

Original entry on oeis.org

1, -2, -360, 16848000, 1897448716800000, -3129723891582775706419200000, -541942196790147039091108680776954796441600000, 66373536294235576434745706427960099542896427384297349714149376000000
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 08 2001

Keywords

Comments

In the reference it is proved that not only det(A_n) is a reciprocal of an integer but the inverse matrix (A_n)^(-1) is an integer matrix.

Examples

			a(3) = -360 because the matrix is / 1,1,1/2 / 1,1/2, 1/3 / 1/2, 1/3, 1/5 / with determinant -1/360.
		

Crossrefs

Programs

  • Mathematica
    Table[(-1)^Floor[n/2]*Product[Fibonacci[k]^(n-Abs[k-n]),{k,1,2*n-1}],{n,1,10}]/Table[Product[Product[Fibonacci[k],{k,1,m-1}],{m,1,n}],{n,1,10}]^2 (* Alexander Adamchuk, May 18 2006 *)
  • PARI
    vector(8, n, 1/matdet(matrix(n, n, i, j, 1/fibonacci(i+j-1)))) \\ Colin Barker, May 01 2015

Formula

a(n) = s(n) * f(n) / h(n)^2, where s(n) = (-1)^Floor[n/2], f(n) = Product[Fibonacci[k]^(n-Abs[k-n]),{k,1,2*n-1}], h(n) = Product[Product[Fibonacci[k],{k,1,m-1}],{m,1,n}]. - Alexander Adamchuk, May 18 2006
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(2*n^2+1)/3) / (A253267^2 * 5^(n/2) * A062073^(2*n-2)). - Vaclav Kotesovec, May 01 2015

Extensions

More terms from Vladeta Jovovic, Jul 11 2001

A152686 Partial products of the partial products of the nonzero Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 12, 360, 86400, 269568000, 17662095360000, 39345496591564800000, 4820704671590339051520000000, 52567343238846954009129910272000000000, 82543717140049422917575408530662149324800000000000
Offset: 0

Views

Author

Keywords

Comments

Partial products of A003266.

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[Fibonacci[k],{k,1,j}],{j,1,n}],{n,1,12}] (* Vaclav Kotesovec, May 01 2015 *)

Formula

a(n) = Product_{i=1..n} A003266(i). - R. J. Mathar, Dec 12 2008
a(n) ~ f * ((1+sqrt(5))/2)^(n*(n+1)*(n+2)/6) * C^n / 5^(n*(n+1)/4), where C = A062073 = 1.2267420107203532444176302... is the Fibonacci factorial constant and f = A253267 = 1.096414072507324423110215998844440375945929608777697938465... . - Vaclav Kotesovec, May 01 2015

Extensions

Edited by R. J. Mathar, Dec 12 2008
a(0)=1 prepended by Alois P. Heinz, Sep 14 2018

A094221 1/detM(n) where M(n) is the n X n matrix m(i,j)=F(i)/F(i+j-1) and F(i)=i-th Fibonacci number.

Original entry on oeis.org

1, -2, -180, 2808000, 63248290560000, -13040516214928232110080000, -173699422048124050990739961787485511680000, 1013027110717881203216509560866301885575342298295136595148800000
Offset: 1

Views

Author

Benoit Cloitre, May 28 2004

Keywords

Crossrefs

Cf. A062381.

Programs

  • Mathematica
    Table[(-1)^Floor[n/2] * Product[Fibonacci[k]^k,{k,1,n-1}] * Product[Fibonacci[k]^(2*n-k),{k,n,2*n-1}] / Product[Fibonacci[k],{k,1,n}] / Product[Product[Fibonacci[k],{k,1,j-1}],{j,1,n}]^2,{n,1,10}] (* Vaclav Kotesovec, May 01 2015 *)
  • PARI
    a(n)=1/matdet(matrix(n,n,i,j,fibonacci(i)/(fibonacci(i+j-1))))

Formula

a(n) = A062381(n)/A003266(n). - corrected by Vaclav Kotesovec, May 01 2015
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(4*n^2 - 3*n - 1)/6) / (A253267^2 * A062073^(2*n-1)). - Vaclav Kotesovec, May 01 2015
Showing 1-3 of 3 results.