A264569
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 1,0 1,1 0,-1 or -1,1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 4, 4, 2, 2, 8, 10, 8, 2, 4, 24, 44, 31, 16, 3, 4, 64, 143, 192, 79, 32, 4, 7, 160, 633, 1130, 888, 224, 64, 5, 9, 384, 2172, 8356, 7808, 4104, 646, 128, 7, 13, 960, 8409, 47571, 96429, 57265, 18540, 1784, 256, 9, 18, 2432, 32046, 305844, 868613
Offset: 1
Some solutions for n=4 k=4
..1..2..3..4..8....1..5..6..4..8....1..5..3..4..8....1..2..3..4..8
..0..7.11..9.13....0..7..2..9..3....0..7..2..9.13....0.10.11.12.13
..5..6.16.17.18...11.15.16.17.18...11..6.16.17.18....5..6..7.14..9
.10.20.21.12.14...10.20.12.13.14...10.20.21.12.14...16.20.21.19.23
.15.22.23.24.19...21.22.23.24.19...15.22.23.24.19...15.22.17.24.18
A286847
Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the grid graph P_m X P_n.
Original entry on oeis.org
1, 2, 2, 2, 6, 2, 4, 7, 7, 4, 4, 18, 16, 18, 4, 7, 39, 53, 53, 39, 7, 9, 75, 154, 306, 154, 75, 9, 13, 155, 436, 1167, 1167, 436, 155, 13, 18, 310, 1268, 4939, 6958, 4939, 1268, 310, 18, 25, 638, 3660, 21313, 40931, 40931, 21313, 3660, 638, 25
Offset: 1
Table begins:
===============================================================
m\n| 1 2 3 4 5 6 7 8
---|-----------------------------------------------------------
1 | 1 2 2 4 4 7 9 13...
2 | 2 6 7 18 39 75 155 310...
3 | 2 7 16 53 154 436 1268 3660...
4 | 4 18 53 306 1167 4939 21313 88161...
5 | 4 39 154 1167 6958 40931 254754 1519544...
6 | 7 75 436 4939 40931 349178 3118754 26797630...
7 | 9 155 1268 21313 254754 3118754 40307167 497709474...
8 | 13 310 3660 88161 1519544 26797630 497709474 8863408138...
...
A253413
Number of n-bit legal circular binary words with maximal set of 1's.
Original entry on oeis.org
1, 1, 2, 3, 6, 5, 5, 14, 14, 21, 27, 44, 57, 78, 114, 158, 222, 306, 437, 608, 851, 1193, 1674, 2346, 3281, 4605, 6450, 9039, 12662, 17748, 24870, 34844, 48830, 68423, 95882, 134349, 188265, 263810, 369666, 518001, 725859, 1017128, 1425261, 1997178, 2798582
Offset: 0
The only legal circular words with maximal set of 1's are
0 if n = 1;
01 & 10 if n = 2;
011, 101 & 110 if n = 3;
0011, 0101, 0110, 1001, 1010 & 1100 if n = 4;
01011, 01101, 10101, 10110 & 11010 if n = 5; and
010101, 011011, 101010, 101101 & 110110 if n = 6.
From _Eric W. Weisstein_, Jul 24 2017 (Start)
Minimal dominating sets of cycle graph C_n:
C_1: {1}
C_2: {{1}, {2}}
C_3: {{1}, {2}, {3}}
C_4: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
C_5: {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}
C_6: {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}} (End)
- Alois P. Heinz, Table of n, a(n) for n = 0..2500 (terms n = 1..1000 from Colin Barker)
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- M. L. Gargano, A. Weisenseel, J. Malerba and M. Lewinter, Discrete Renyi parking constants, 36th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, 2005, Congr. Numer. 176 (2005) 43-48.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).
Asymmetric analog of
A001608 (no consecutive 1s but maximal).
-
Join[{1}, Table[RootSum[1 - #^2 - #^3 - #^4 + #^6 &, #^n &], {n, 2, 20}]] (* Eric W. Weisstein, Jul 24 2017 *)
Join[{1}, LinearRecurrence[{0, 1, 1, 1, 0, -1}, {0, 2, 3, 6, 5, 5}, {2, 20}]] (* Eric W. Weisstein, Jul 24 2017 *)
CoefficientList[Series[(1 + 2 x + 2 x^2 + 3 x^3 - x^4 - 6 x^5 + x^6)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 24 2017 *)
-
Vec(x*(1 + 2*x + 2*x^2 + 3*x^3 - x^4 - 6*x^5 + x^6) / (1 - x^2 - x^3 - x^4 + x^6) + O(x^100)) \\ Colin Barker, Jul 26 2017
-
def A253413(n):
if n > 1:
c, fs = 0, '0'+str(n)+'b'
for i in range(2**n):
s = format(i,fs)
s = s[-2:]+s+s[:2]
for j in range(n):
if s[j:j+4] == '0100' or s[j+1:j+5] == '0010' or s[j+1:j+4] == '000' or s[j+1:j+4] == '111':
break
else:
c += 1
return c
else:
return 1 # Chai Wah Wu, Jan 02 2015
A303072
Number of minimal total dominating sets in the n-ladder graph.
Original entry on oeis.org
1, 4, 4, 16, 16, 49, 81, 169, 324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676, 544644, 1067089, 2099601, 4116841, 8088336, 15880225, 31181056, 61230625, 120209296, 236083225, 463497841, 910168561, 1787091076, 3509140644, 6890328064, 13529411856
Offset: 1
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (-1,1,3,7,8,2,6,6,0,0,-6,-6,-2,-8,-7,-3,-1,1,1).
-
Table[(RootSum[1 - #^2 - #^3 - #^4 + #^6 &, (9 - 18 #^2 + 23 #^3 - 3 #^4 + 32 #^5) #^n &]/229)^2, {n, 40}]
LinearRecurrence[{-1, 1, 3, 7, 8, 2, 6, 6, 0, 0, -6, -6, -2, -8, -7, -3, -1, 1, 1}, {1, 4, 4, 16, 16, 49, 81, 169,324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676}, 40]
CoefficientList[Series[(-1 - 5 x - 7 x^2 - 13 x^3 - 9 x^4 - x^5 - 4 x^6 + 5 x^7 + 13 x^8 + 14 x^9 + 21 x^10 + 15 x^11 + 12 x^12 + 15 x^13 + 9 x^14 + 3 x^15 - 2 x^17 - x^18)/(-1 - x + x^2 + 3 x^3 + 7 x^4 + 8 x^5 + 2 x^6 + 6 x^7 + 6 x^8 - 6 x^11 - 6 x^12 - 2 x^13 - 8 x^14 - 7 x^15 - 3 x^16 - x^17 + x^18 + x^19), {x, 0, 40}], x]
Showing 1-4 of 4 results.
Comments