cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A264569 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 1,0 1,1 0,-1 or -1,1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 4, 2, 2, 8, 10, 8, 2, 4, 24, 44, 31, 16, 3, 4, 64, 143, 192, 79, 32, 4, 7, 160, 633, 1130, 888, 224, 64, 5, 9, 384, 2172, 8356, 7808, 4104, 646, 128, 7, 13, 960, 8409, 47571, 96429, 57265, 18540, 1784, 256, 9, 18, 2432, 32046, 305844, 868613
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2015

Keywords

Comments

Table starts
.1...1.....1.......2.........2...........4.............4...............7
.1...2.....4.......8........24..........64...........160.............384
.1...4....10......44.......143.........633..........2172............8409
.2...8....31.....192......1130........8356.........47571..........305844
.2..16....79.....888......7808.......96429........868613.........8968735
.3..32...224....4104.....57265.....1133040......16284544.......273793368
.4..64...646...18540....403872....13182464.....298587595......8004883334
.5.128..1784...85752...2873739...152082304....5442431797....235814997396
.7.256..5010..389340..20432891..1755041376...99386232806...6882481295560
.9.512.14026.1787832.144677017.20212718576.1803702025944.200087118615516

Examples

			Some solutions for n=4 k=4
..1..2..3..4..8....1..5..6..4..8....1..5..3..4..8....1..2..3..4..8
..0..7.11..9.13....0..7..2..9..3....0..7..2..9.13....0.10.11.12.13
..5..6.16.17.18...11.15.16.17.18...11..6.16.17.18....5..6..7.14..9
.10.20.21.12.14...10.20.12.13.14...10.20.21.12.14...16.20.21.19.23
.15.22.23.24.19...21.22.23.24.19...15.22.23.24.19...15.22.17.24.18
		

Crossrefs

Column 1 is A000931(n+4).
Column 2 is A000079(n-1).
Row 1 is A253412(n-2).

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +a(n-3)
k=2: a(n) = 2*a(n-1)
k=3: [order 15]
k=4: a(n) = 18*a(n-2) +36*a(n-3) -45*a(n-4) -216*a(n-5) -243*a(n-6) for n>7
k=5: [order 84]
k=6: [order 36] for n>40
Empirical for row n:
n=1: a(n) = a(n-2) +a(n-3) +a(n-4) -a(n-6)
n=2: a(n) = 2*a(n-1) +8*a(n-4)
n=3: [order 70]
n=4: [order 56]

A286847 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 2, 6, 2, 4, 7, 7, 4, 4, 18, 16, 18, 4, 7, 39, 53, 53, 39, 7, 9, 75, 154, 306, 154, 75, 9, 13, 155, 436, 1167, 1167, 436, 155, 13, 18, 310, 1268, 4939, 6958, 4939, 1268, 310, 18, 25, 638, 3660, 21313, 40931, 40931, 21313, 3660, 638, 25
Offset: 1

Views

Author

Andrew Howroyd, Aug 01 2017

Keywords

Examples

			Table begins:
===============================================================
m\n|  1   2    3     4       5        6         7          8
---|-----------------------------------------------------------
1  |  1   2    2     4       4        7         9         13...
2  |  2   6    7    18      39       75       155        310...
3  |  2   7   16    53     154      436      1268       3660...
4  |  4  18   53   306    1167     4939     21313      88161...
5  |  4  39  154  1167    6958    40931    254754    1519544...
6  |  7  75  436  4939   40931   349178   3118754   26797630...
7  |  9 155 1268 21313  254754  3118754  40307167  497709474...
8  | 13 310 3660 88161 1519544 26797630 497709474 8863408138...
...
		

Crossrefs

Rows 1-3 are A253412, A290379, A286848.
Main diagonal is A290382.
Cf. A218354 (dominating sets), A089934 (independent), A286868 (irredundant).
Cf. A286849 (king graph).

A253413 Number of n-bit legal circular binary words with maximal set of 1's.

Original entry on oeis.org

1, 1, 2, 3, 6, 5, 5, 14, 14, 21, 27, 44, 57, 78, 114, 158, 222, 306, 437, 608, 851, 1193, 1674, 2346, 3281, 4605, 6450, 9039, 12662, 17748, 24870, 34844, 48830, 68423, 95882, 134349, 188265, 263810, 369666, 518001, 725859, 1017128, 1425261, 1997178, 2798582
Offset: 0

Views

Author

Steven Finch, Dec 31 2014

Keywords

Comments

An n-bit circular binary word is legal if every 1 has an adjacent 0.
In other words, a(n) is the number of minimal dominating sets in the n-cycle graph C_n. - Eric W. Weisstein, Jul 24 2017

Examples

			The only legal circular words with maximal set of 1's are
  0 if n = 1;
  01 & 10 if n = 2;
  011, 101 & 110 if n = 3;
  0011, 0101, 0110, 1001, 1010 & 1100 if n = 4;
  01011, 01101, 10101, 10110 & 11010 if n = 5; and
  010101, 011011, 101010, 101101 & 110110 if n = 6.
From _Eric W. Weisstein_, Jul 24 2017 (Start)
Minimal dominating sets of cycle graph C_n:
  C_1: {1}
  C_2: {{1}, {2}}
  C_3: {{1}, {2}, {3}}
  C_4: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
  C_5: {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}
  C_6: {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}} (End)
		

Crossrefs

Asymmetric analog of A001608 (no consecutive 1s but maximal).
Circular analog of A253412.

Programs

  • Mathematica
    Join[{1}, Table[RootSum[1 - #^2 - #^3 - #^4 + #^6 &, #^n &], {n, 2, 20}]]  (* Eric W. Weisstein, Jul 24 2017 *)
    Join[{1}, LinearRecurrence[{0, 1, 1, 1, 0, -1}, {0, 2, 3, 6, 5, 5}, {2, 20}]] (* Eric W. Weisstein, Jul 24 2017 *)
    CoefficientList[Series[(1 + 2 x + 2 x^2 + 3 x^3 - x^4 - 6 x^5 + x^6)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 24 2017 *)
  • PARI
    Vec(x*(1 + 2*x + 2*x^2 + 3*x^3 - x^4 - 6*x^5 + x^6) / (1 - x^2 - x^3 - x^4 + x^6) + O(x^100)) \\ Colin Barker, Jul 26 2017
  • Python
    def A253413(n):
        if n > 1:
            c, fs = 0, '0'+str(n)+'b'
            for i in range(2**n):
                s = format(i,fs)
                s = s[-2:]+s+s[:2]
                for j in range(n):
                    if s[j:j+4] == '0100' or s[j+1:j+5] == '0010' or s[j+1:j+4] == '000' or s[j+1:j+4] == '111':
                        break
                else:
                    c += 1
            return c
        else:
            return 1 # Chai Wah Wu, Jan 02 2015
    

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) for n>7. - Chai Wah Wu, Jan 02 2015
G.f.: (1 + x + x^2 + x^3 + 2*x^4 - x^5 - 5*x^6 + x^7) / (1 - x^2 - x^3 - x^4 + x^6). - Paul D. Hanna, Jan 02 2015

Extensions

a(21)-a(28) from Chai Wah Wu, Jan 02 2015
More terms from Colin Barker, Jul 26 2017
a(0)=1 prepended by Alois P. Heinz, Oct 26 2022

A303072 Number of minimal total dominating sets in the n-ladder graph.

Original entry on oeis.org

1, 4, 4, 16, 16, 49, 81, 169, 324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676, 544644, 1067089, 2099601, 4116841, 8088336, 15880225, 31181056, 61230625, 120209296, 236083225, 463497841, 910168561, 1787091076, 3509140644, 6890328064, 13529411856
Offset: 1

Views

Author

Eric W. Weisstein, Apr 18 2018

Keywords

Crossrefs

Row 2 of A303118.

Programs

  • Mathematica
    Table[(RootSum[1 - #^2 - #^3 - #^4 + #^6 &, (9 - 18 #^2 + 23 #^3 - 3 #^4 + 32 #^5) #^n &]/229)^2, {n, 40}]
    LinearRecurrence[{-1, 1, 3, 7, 8, 2, 6, 6, 0, 0, -6, -6, -2, -8, -7, -3, -1, 1, 1}, {1, 4, 4, 16, 16, 49, 81, 169,324, 625, 1296, 2401, 4900, 9409, 18769, 36481, 71824, 141376, 276676}, 40]
    CoefficientList[Series[(-1 - 5 x - 7 x^2 - 13 x^3 - 9 x^4 - x^5 - 4 x^6 + 5 x^7 + 13 x^8 + 14 x^9 + 21 x^10 + 15 x^11 + 12 x^12 + 15 x^13 + 9 x^14 + 3 x^15 - 2 x^17 - x^18)/(-1 - x + x^2 + 3 x^3 + 7 x^4 + 8 x^5 + 2 x^6 + 6 x^7 + 6 x^8 - 6 x^11 - 6 x^12 - 2 x^13 - 8 x^14 - 7 x^15 - 3 x^16 - x^17 + x^18 + x^19), {x, 0, 40}], x]

Formula

a(n) = A253412(n)^2.
G.f.: x*(-1 - 5*x - 7*x^2 - 13*x^3 - 9*x^4 - x^5 - 4*x^6 + 5*x^7 + 13*x^8 + 14*x^9 + 21*x^10 + 15*x^11 + 12*x^12 + 15*x^13 + 9*x^14 + 3*x^15 - 2*x^17 - x^18)/(-1 - x + x^2 + 3*x^3 + 7*x^4 + 8*x^5 + 2*x^6 + 6*x^7 + 6*x^8 - 6*x^11 - 6*x^12 - 2*x^13 - 8*x^14 - 7*x^15 - 3*x^16 - x^17 + x^18 + x^19).
Showing 1-4 of 4 results.