cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133272 Indices of centered heptagonal numbers (A069099) which are also heptagonal numbers (A000566).

Original entry on oeis.org

1, 7, 78, 924, 11005, 131131, 1562562, 18619608, 221872729, 2643853135, 31504364886, 375408525492, 4473397941013, 53305366766659, 635191003258890, 7568986672340016, 90192649064821297, 1074742802105515543
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Numbers X such that 140*X^2-140*X+49 is a square.
Also positive integers x in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of y being A253621. - Colin Barker, Jan 06 2015
Also indices of centered pentagonal numbers (A005891) which are also centered heptagonal numbers (A069099). - Colin Barker, Jan 06 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-13,1},{1,7,78},25] (* Paolo Xausa, Jan 07 2024 *)
  • PARI
    Vec(x*(6*x-1)/((x-1)*(x^2-12*x+1)) + O(x^100)) \\ Colin Barker, Jan 06 2015

Formula

a(n+2) = 12*a(n+1) - a(n) - 5.
a(n+1) = 6*a(n) - 5/2 + (1/2)*sqrt(140*a(n)^2 - 140*a(n) + 49).
G.f.: x*(-1+6*x)/((-1+x)*(1-12*x+x^2)). - R. J. Mathar, Nov 14 2007
a(n) = 13*a(n-1) - 13*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015

Extensions

More terms from Paolo P. Lava, Jul 14 2008

A253621 Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 6, 66, 781, 9301, 110826, 1320606, 15736441, 187516681, 2234463726, 26626048026, 317278112581, 3780711302941, 45051257522706, 536834378969526, 6396961290111601, 76226701102369681, 908323451938324566, 10823654722157525106, 128975533213951976701
Offset: 1

Views

Author

Colin Barker, Jan 06 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of x being A133272.

Examples

			6 is in the sequence because the 6th centered heptagonal number is 106, which is also the 7th centered pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2)-5: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[1] == 1, a[2] == 6, a[n] == 12 a[n-1] - a[n-2] - 5}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-12*x+1)) + O(x^100))
    

Formula

a(n) = 13*a(n-1)-13*a(n-2)+a(n-3).
G.f.: -x*(x^2-7*x+1) / ((x-1)*(x^2-12*x+1)).
a(n) = (14-(-7+sqrt(35))*(6+sqrt(35))^n+(6-sqrt(35))^n*(7+sqrt(35)))/28. - Colin Barker, Mar 05 2016
a(n) = 12*a(n-1) - a(n-2) - 5. - Vincenzo Librandi, Mar 05 2016
a(n) = (5*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016
Showing 1-2 of 2 results.