cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253621 Indices of centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 6, 66, 781, 9301, 110826, 1320606, 15736441, 187516681, 2234463726, 26626048026, 317278112581, 3780711302941, 45051257522706, 536834378969526, 6396961290111601, 76226701102369681, 908323451938324566, 10823654722157525106, 128975533213951976701
Offset: 1

Views

Author

Colin Barker, Jan 06 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of x being A133272.

Examples

			6 is in the sequence because the 6th centered heptagonal number is 106, which is also the 7th centered pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2)-5: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[1] == 1, a[2] == 6, a[n] == 12 a[n-1] - a[n-2] - 5}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-12*x+1)) + O(x^100))
    

Formula

a(n) = 13*a(n-1)-13*a(n-2)+a(n-3).
G.f.: -x*(x^2-7*x+1) / ((x-1)*(x^2-12*x+1)).
a(n) = (14-(-7+sqrt(35))*(6+sqrt(35))^n+(6-sqrt(35))^n*(7+sqrt(35)))/28. - Colin Barker, Mar 05 2016
a(n) = 12*a(n-1) - a(n-2) - 5. - Vincenzo Librandi, Mar 05 2016
a(n) = (5*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016

A253622 Centered heptagonal numbers (A069099) which are also centered pentagonal numbers (A005891).

Original entry on oeis.org

1, 106, 15016, 2132131, 302747551, 42988020076, 6103996103206, 866724458635141, 123068769130086781, 17474898492013687726, 2481312517096813570276, 352328902529255513291431, 50028222846637186073812891, 7103655315319951166968139056
Offset: 1

Views

Author

Colin Barker, Jan 06 2015

Keywords

Examples

			106 is in the sequence because it is the 6th centered heptagonal number and the 7th centered pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{143,-143,1},{1,106,15016},20] (* Harvey P. Dale, Feb 25 2016 *)
  • PARI
    Vec(-x*(x^2-37*x+1)/((x-1)*(x^2-142*x+1)) + O(x^100))

Formula

a(n) = 143*a(n-1)-143*a(n-2)+a(n-3).
G.f.: -x*(x^2-37*x+1) / ((x-1)*(x^2-142*x+1)).
a(n) = (4+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/16. - Colin Barker, Mar 07 2016
Showing 1-2 of 2 results.