cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253942 a(n) = 3*binomial(n+1, 5).

Original entry on oeis.org

3, 18, 63, 168, 378, 756, 1386, 2376, 3861, 6006, 9009, 13104, 18564, 25704, 34884, 46512, 61047, 79002, 100947, 127512, 159390, 197340, 242190, 294840, 356265, 427518, 509733, 604128, 712008, 834768, 973896, 1130976, 1307691, 1505826, 1727271, 1974024, 2248194
Offset: 4

Views

Author

Serhat Bulut, Jan 20 2015

Keywords

Comments

For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*binomial(n+1, 5) (for n >= 4), hence a(n) = 3*binomial(n+1, 5) = 3*A000389(n+1).

Examples

			For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*binomial(4+1, 5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*binomial(5+1, 5).
		

Crossrefs

Cf. A000389.

Programs

  • Magma
    [3*Binomial(n+1, 5): n in [4..40]]; // Vincenzo Librandi, Feb 14 2015
  • Mathematica
    a253942[n_] := Drop[Plus @@ Flatten[Part[#, 1 ;; 2] & /@ Subsets[Range@ #, {4}]] & /@ Range@ n, 3]; a253942[28] (* Michael De Vlieger, Jan 20 2015 *)
    Table[3 Binomial[n + 1, 5], {n, 4, 35}] (* Vincenzo Librandi, Feb 14 2015 *)
  • PARI
    a(n) = 3*binomial(n+1, 5); \\ Michel Marcus, Jan 20 2015
    
  • PARI
    Vec(3*x^4/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 20 2015
    

Formula

a(n) = 3*A000389(n+1).
a(n) = (n-3)*(n-2)*(n-1)*n*(1+n)/40. - Colin Barker, Jan 20 2015
G.f.: 3*x^4 / (x-1)^6. - Colin Barker, Jan 20 2015
E.g.f.: x^4*(x+5)*exp(x)/40. - G. C. Greubel, Nov 25 2017
a(n) = Sum_{k=3..n-1} A050534(k). - Ivan N. Ianakiev, Oct 08 2023