A220414 a(n) = 6*a(n-1) - a(n-2), with a(1) = 13, a(2) = 73.
13, 73, 425, 2477, 14437, 84145, 490433, 2858453, 16660285, 97103257, 565959257, 3298652285, 19225954453, 112057074433, 653116492145, 3806641878437, 22186734778477, 129313766792425, 753695865976073, 4392861429064013, 25603472708408005, 149227974821384017
Offset: 1
Examples
From _Wolfdieter Lang_, Feb 07 2015: (Start) Pell equation x^2 - 2*y^2 = -7^2 instance: A254757(3)^2 - 2*a(3)^2 = 601^2 - 2*425^2 = -49. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- César Aguilera, Notes on Perfect Numbers, OSF Preprints, 2023, p. 19.
- R. De Castro, J. Ramírez, and G. Rubiano, Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv:1212.1368 [cs.DM], 2012-2014.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Magma
I:=[13, 73]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 01 2013
-
Maple
with(orthopoly): a := n -> `if`(n=1,13,13*U(n-1,3)-5*U(n-2,3)): seq(a(n),n=1..22); # (after Wolfdieter Lang) Peter Luschny, Feb 07 2015
-
Mathematica
t = {13, 73}; Do[AppendTo[t, 6*t[[-1]] - t[[-2]]], {30}]; t (* T. D. Noe, Dec 20 2012 *) LinearRecurrence[{6,-1},{13,73},40] (* Harvey P. Dale, Jan 26 2013 *)
Formula
G.f.: (13-5*x)/(x^2-6*x+1). - Harvey P. Dale, Jan 26 2013
From Wolfdieter Lang, Feb 07 2015: (Start)
a(n) = 13*S(n-1, 6) - 5*S(n-2, 6), n >= 1, with Chebyshev's S-polynomials evaluated at x = 6 (see A049310).
a(n) = 6*a(n-1) - a(n-2), n >= 2, with a(0) = 5 and a(1) = 13.
a(n) = irrational part of z(n), where z(n) = (-1+5*sqrt(2))*(3+2*sqrt(2))^n, n >= 1. (End)
Comments