cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142970 Numerators of n-th approximants of a continued fraction for Pi-3.

Original entry on oeis.org

0, 1, 6, 61, 660, 8901, 133266, 2303865, 43808040, 928665225, 21386693790, 537861526965, 14540730176700, 423407835413325, 13140639311294250, 434929825450371825, 15237733330856005200, 565064979900590948625, 22056613209702152061750, 905913636742121921038125
Offset: 0

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

The corresponding denominators are A001879(n), n >= 0.
Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ... ))). See the J.-P. Delahaye reference. R. Rosenthal mentioned this continued fraction in an e-mail to the author Jul 16 2008.
For the approximants in lowest terms cf. the ones for 3*(Pi-3) given by A130411(n)/A130412(n) in lowest terms.
The above continued fraction for Pi is the particular case n = 0, x = 3 of a result of Ramanujan, previously given by Euler - see Berndt et al., Chapter 12, Entry 25, p. 268. - Peter Bala, Feb 19 2015

Examples

			Approximants a(n)/A001879(n) (not in lowest terms): [0/1]; [1/6]; [6/45]; [61/420]; [660/4725]; [8901/62370];..
Approximants in lowest terms: [0/1]; [1/6]; [2/15]; [61/420]; [44/315]; [989/6930]; ...
		

References

  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997. In German: Pi - die Story, Birkhäuser, 1999 Basel, p. 87.

Crossrefs

Programs

  • Magma
    I:=[1,6]; [0] cat [n le 2 select I[n] else 6*Self(n-1)+(2*n-1)^2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 20 2015
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==6 a[n-1] + (2 n-1)^2 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Feb 20 2015 *)

Formula

a(n) = 6*a(n-1) + ((2*n-1)^2)*a(n-2), a(0)=0, a(1)=1.
E.g.f.: (-3*(1+x-sqrt(1-4*x^2))+ 2*(1+x)*arcsin(2*x))/(1-2*x)^(5/2) from the solution of the linear second order differential equation (1-4*x^2)*y''(x) - 2*(8*x+3)*y'(x) - 9*y(x)=0, obtained from the recurrence, with inputs y(0)=0 and y'(0)=1. A special solution is the e.g.f. of the denominators A001879: (1+x)/(1-2*x)^(5/2).
a(n) ~ (Pi-3) * 2^(n+3/2) * n^(n+2) / exp(n). - Vaclav Kotesovec, Oct 05 2013

A254794 Decimal expansion of L^2/Pi where L is the lemniscate constant A062539.

Original entry on oeis.org

2, 1, 8, 8, 4, 3, 9, 6, 1, 5, 2, 2, 6, 4, 7, 6, 6, 3, 8, 8, 3, 6, 7, 6, 9, 9, 4, 0, 7, 0, 4, 4, 6, 4, 5, 4, 3, 2, 5, 9, 3, 7, 2, 7, 2, 2, 8, 2, 5, 5, 6, 6, 7, 2, 2, 1, 1, 9, 2, 8, 6, 2, 1, 0, 5, 7, 9, 4, 5, 1, 9, 3, 8, 4, 4, 5, 9, 3, 2, 9, 4, 7, 7, 7, 1, 0, 3, 3, 1, 4, 9, 6, 7, 7, 5, 6, 0, 8, 6, 3, 1, 8, 0, 2
Offset: 1

Views

Author

Peter Bala, Feb 22 2015

Keywords

Comments

Brouncker gave the generalized continued fraction expansion 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))). More generally, Osler shows that the continued fraction n + 1^2/(2*n + 3^2/(2*n + 5^2/(2*n + ... ))) equals a rational multiple of 4/Pi or its reciprocal when n is a positive odd integer, and equals a rational multiple of L^2/Pi or its reciprocal when n is a positive even integer.

Examples

			2.18843961522647663883676994070446454325937272282556672211928621....
		

References

  • O. Perron, Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(110)); 2*(Gamma(5/4)/Gamma(3/2))^4; // G. C. Greubel, Mar 06 2019
    
  • Maple
    #A254794
    digits:=105:
    2*( GAMMA(5/4)/GAMMA(3/2) )^4:
    evalf(%);
  • Mathematica
    RealDigits[2*(Gamma[5/4]/Gamma[3/2])^4, 10, 110][[1]] (* G. C. Greubel, Mar 06 2019 *)
  • PARI
    default(realprecision, 110); 2*(gamma(5/4)/gamma(3/2))^4 \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    numerical_approx(2*(gamma(5/4)/gamma(3/2))^4, digits=110) # G. C. Greubel, Mar 06 2019

Formula

L^2/Pi = 2*( (1/4)!/(1/2)! )^4 = 9/4*( (1/4)!/(3/4)! )^2.
L^2/Pi = lim_{n -> oo} (4*n + 2) * Product {k = 0..n} ( (4*k - 1)/(4*k + 1) )^2
Generalized continued fraction: L^2/Pi = 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))). This is the particular case n = 0, x = 2 of a result of Ramanujan - see Berndt et al., Entry 25. See also Perron, p. 35.
The sequence of convergents to Ramanujan's continued fraction begins [2/1, 9/4, 54/25, 441/200, 4410/2025, ...]. See A254795 for the numerators and A254796 for the denominators.
Another continued fraction is L^2/Pi = 1 + 2/(1 + 1*3/(2 + 3*5/(2 + 5*7/(2 + 7*9/(2 + ... ))))), which can be transformed into the slowly converging series: L^2/Pi = 1 + 4 * Sum {n >= 0} P(n)^2/(4*n + 5), where P(n) = Product {k = 1..n} (4*k - 1)/(4*k + 1).
(L^2/Pi)^2 = 3 + 2*( 1^2/(1 + 1^2/(3 + 3^2/(1 + 3^2/(3 + 5^2/(1 + 5^2/(3 + ... )))))) ) follows by setting n = 0, x = 2 in Entry 26 of Berndt et al.
From Peter Bala, Feb 28 2019: (Start)
For m = 0,1,2,..., C = 4*(m + 1)*P(m)/Q(m), where P(m) = Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ) and Q(m) = Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ).
For m = 0,1,2,..., C = - Product_{k = 1..m} (1 - 4*k)/(1 + 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 1)^2 ) and
1/C = Product_{k = 0..m} (1 + 4*k)/(1 - 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 3)^2 ).
C = (Pi/2) * ( Sum_{n = -oo..oo} exp(-Pi*n^2) )^4. (End)
Equals A133748/Pi. - Hugo Pfoertner, Apr 13 2024

A254796 Denominators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))).

Original entry on oeis.org

1, 4, 25, 200, 2025, 24300, 342225, 5475600, 98903025, 1978060500, 43616234025, 1046789616600, 27260146265625, 763284095437500, 22925783009390625, 733625056300500000, 24966177697226390625, 898782397100150062500, 34178697267502928765625
Offset: 0

Views

Author

Peter Bala, Feb 23 2015

Keywords

Comments

The generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))) represents the constant L^2/Pi = 2.188439... = A254794, where L is the lemniscate constant A062539. See A254795 for the numerators of the convergents of the continued fraction.

Examples

			54/25 = 2.16, 441/200 = 2.205 etc approach 2.188..
		

Crossrefs

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 24 2015
  • Maple
    a[0] := 1: a[1] := 4:
    for n from 2 to 18 do a[n] := 4*a[n-1] + (2*n-1)^2*a[n-2] end do:
    seq(a[n], n = 0 .. 18);
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 4, a[n] == 4 a[n - 1] + (2 n - 1)^2 a[n - 2]}, a, {n, 20}] (* Vincenzo Librandi, Feb 24 2015 *)

Formula

a(2*n) = A007696(n+1)^2 = ( Product {k = 0..n} 4*k + 1 )^2.
a(2*n-1) = 4*n*A007696(n)^2 = 4*n * ( Product {k = 0..n-1} 4*k + 1 )^2.
a(n) = 4*a(n-1) + (2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 4.
a(2*n+1) = 4*(n + 1)*a(2*n); a(2*n) = (4*n + 2)*a(2*n-1) + a(2*n-2).
Empirical e.g.f.: ((-Q(1/2, -3)-Q(-1/2, -3))*P(1/2, (2*x+3)/(2*x-1))+Q(1/2, (2*x+3)/(2*x-1))*(P(1/2, -3)+P(-1/2, -3)))/((1-2*x)^(3/2)*(-Q(-1/2, -3)*P(1/2, -3)+Q(1/2, -3)*P(-1/2, -3))) where P and Q are Legendre functions of the first and second kinds. - Robert Israel, Feb 24 2015
Showing 1-3 of 3 results.