A255211 a(n) = n*(n+1)*(7*n+2)/6.
0, 3, 16, 46, 100, 185, 308, 476, 696, 975, 1320, 1738, 2236, 2821, 3500, 4280, 5168, 6171, 7296, 8550, 9940, 11473, 13156, 14996, 17000, 19175, 21528, 24066, 26796, 29725, 32860, 36208, 39776, 43571, 47600, 51870, 56388, 61161, 66196, 71500, 77080, 82943
Offset: 0
Examples
From the second comment: a(1)= 2+1, a(2)= 10+6, a(3)= 28+18, a(4)= 60+40.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, Illustration a(1), a(2), a(3), a(4) and a(5)
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n+1)*(7*n+2)/6 : n in [0..50]]; // Wesley Ivan Hurt, Apr 11 2021
-
Mathematica
Table[n (n + 1) (7 n + 2)/6, {n, 0, 50}] (* Bruno Berselli, Feb 17 2015 *)
-
PARI
concat(0, Vec(x*(4*x+3)/(x-1)^4 + O(x^100))) \\ Colin Barker, Feb 17 2015
-
PARI
vector(50, n, n--; n*(n+1)*(7*n+2)/6) \\ Bruno Berselli, Feb 17 2015
Formula
G.f.: x*(3 + 4*x) / (1 - x)^4. - Colin Barker, Feb 17 2015
a(n) = Sum_{j=0..n-1} (n-j)*(3*n-2*j) = Sum_{j=1..n} j*(n+2*j) for n>0.
Sum_{n>=1} 1/a(n) = 21*HarmonicNumber(2/7)/5 - 6/5 = 0.44513027538601361333... . - Vaclav Kotesovec, Sep 22 2016
E.g.f.: exp(x)*x*(18 + 30*x + 7*x^2)/6. - Stefano Spezia, Mar 02 2025
Extensions
Edited and extended by Bruno Berselli, Dec 01 2016
Comments