A261835
Number A(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 16, 3, 0, 1, 5, 10, 46, 21, 5, 0, 1, 6, 15, 100, 75, 50, 11, 0, 1, 7, 21, 185, 195, 231, 205, 13, 0, 1, 8, 28, 308, 420, 736, 1414, 292, 19, 0, 1, 9, 36, 476, 798, 1876, 6032, 2376, 587, 27, 0
Offset: 0
A(3,2) = 16: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a2aa, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1b2bb.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 1, 3, 6, 10, 15, 21, 28, ...
0, 3, 16, 46, 100, 185, 308, 476, ...
0, 3, 21, 75, 195, 420, 798, 1386, ...
0, 5, 50, 231, 736, 1876, 4116, 8106, ...
0, 11, 205, 1414, 6032, 19320, 51114, 117936, ...
0, 13, 292, 2376, 11712, 42610, 126288, 322764, ...
Columns k=0-10 give:
A000007,
A032020,
A261840,
A261841,
A261842,
A261843,
A261844,
A261845,
A261846,
A261847,
A261848.
-
b:= proc(n, i, p, k) option remember;
`if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2 < n, 0, If[n == 0, p!, b[n, i-1, p, k] + If[i>n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; A[n_, k_] := b[n, n, 0, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 16 2017, translated from Maple *)
A304993
a(n) = n*(n + 1)*(7*n + 5)/6.
Original entry on oeis.org
0, 4, 19, 52, 110, 200, 329, 504, 732, 1020, 1375, 1804, 2314, 2912, 3605, 4400, 5304, 6324, 7467, 8740, 10150, 11704, 13409, 15272, 17300, 19500, 21879, 24444, 27202, 30160, 33325, 36704, 40304, 44132, 48195, 52500, 57054, 61864, 66937, 72280, 77900, 83804, 89999, 96492
Offset: 0
Row sums of the triangle in
A141433.
-
Table[n (n + 1) (7 n + 5)/6, {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,4,19,52},50] (* Harvey P. Dale, May 03 2023 *)
-
concat(0, Vec(x*(4 + 3*x)/(1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018
A178238
Triangle read by rows: partial column sums of the triangle of natural numbers (written sequentially by rows).
Original entry on oeis.org
1, 3, 3, 7, 8, 6, 14, 16, 15, 10, 25, 28, 28, 24, 15, 41, 45, 46, 43, 35, 21, 63, 68, 70, 68, 61, 48, 28, 92, 98, 101, 100, 94, 82, 63, 36, 129, 136, 140, 140, 135, 124, 106, 80, 45, 175, 183, 188, 189, 185, 175, 158, 133, 99, 55, 231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66
Offset: 1
First few rows of the triangle:
1;
3, 3;
7, 8, 6;
14, 16, 15, 10;
25, 28, 28, 24, 15;
41, 45, 46, 43, 35, 21;
63, 68, 70, 68, 61, 48, 28;
92, 98, 101, 100, 94, 82, 63, 36;
129, 136, 140, 140, 135, 124, 106, 80, 45;
175, 183, 188, 189, 185, 175, 158, 133, 99, 55;
231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66;
298, 308, 314, 318, 316, 308, 293, 270, 238, 196, 143, 78;
...
These are the partial sums of the columns of the triangle:
1;
2, 3;
4, 5, 6;
7, 8, 9, 10;
...
For example, T(4,2) = 3 + 5 + 8 = 16.
-
T(n,k) = {binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1)}
{ for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) } \\ Andrew Howroyd, Apr 18 2021
Name changed and terms a(56) and beyond from
Andrew Howroyd, Apr 18 2021
A141434
Triangle T(n, k) = (k-1)*(3*n-k-1), read by rows.
Original entry on oeis.org
0, 0, 3, 0, 6, 10, 0, 9, 16, 21, 0, 12, 22, 30, 36, 0, 15, 28, 39, 48, 55, 0, 18, 34, 48, 60, 70, 78, 0, 21, 40, 57, 72, 85, 96, 105, 0, 24, 46, 66, 84, 100, 114, 126, 136, 0, 27, 52, 75, 96, 115, 132, 147, 160, 171
Offset: 1
Triangle begins as:
0;
0, 3;
0, 6, 10;
0, 9, 16, 21;
0, 12, 22, 30, 36;
0, 15, 28, 39, 48, 55;
0, 18, 34, 48, 60, 70, 78;
0, 21, 40, 57, 72, 85, 96, 105;
0, 24, 46, 66, 84, 100, 114, 126, 136;
0, 27, 52, 75, 96, 115, 132, 147, 160, 171;
-
[(k-1)*(3*n-k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
-
A141434:= (n,k) -> (k-1)*(3*n-k-1); seq(seq(A141434(n,k), k=1..n), n=1..12); # G. C. Greubel, Apr 01 2021
-
Table[(k-1)*(3*n-k-1), {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2021 *)
-
flatten([[(k-1)*(3*n-k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
A255687
a(n) = n*(n + 1)*(7*n + 11)/6.
Original entry on oeis.org
0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0
-
[n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
-
A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
-
Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
-
vector(50, n, n--; n*(n+1)*(7*n+11)/6)
-
concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
-
[n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015
A257093
a(n) = n*(n+1)*(13*n+2)/6.
Original entry on oeis.org
0, 5, 28, 82, 180, 335, 560, 868, 1272, 1785, 2420, 3190, 4108, 5187, 6440, 7880, 9520, 11373, 13452, 15770, 18340, 21175, 24288, 27692, 31400, 35425, 39780, 44478, 49532, 54955, 60760, 66960, 73568, 80597, 88060, 95970, 104340, 113183, 122512, 132340
Offset: 0
Second comment a(0) = 0; a(1) = 3 + 2; a(2) = 16 + 12; a(3) = 46 + 36; a(4) = 100 + 80; a(5) = 185 + 150; a(6) = 308 + 252.
-
[n*(n+1)*(13*n+2)/6: n in [0..40]]; // Vincenzo Librandi, Apr 16 2015
-
Table[n (n + 1) (13 n + 2)/6, {n, 0, 40}] (* Vincenzo Librandi, Apr 16 2015 *)
CoefficientList[Series[x (5+8x)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,28,82},60] (* Harvey P. Dale, Feb 12 2023 *)
A296636
Sequences n*(n+1)*(6*n+1)/2 and n*(n+1)*(7*n+1)/2 interleaved.
Original entry on oeis.org
0, 7, 8, 39, 45, 114, 132, 250, 290, 465, 540, 777, 903, 1204, 1400, 1764, 2052, 2475, 2880, 3355, 3905, 4422, 5148, 5694, 6630, 7189, 8372, 8925, 10395, 10920, 12720, 13192, 15368, 15759, 18360, 18639, 21717, 21850, 25460, 25410, 29610, 29337, 34188, 33649, 39215, 38364, 44712
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, Illustration
- Eric Weisstein's World of Mathematics, Polyiamond
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
-
List([0..50], n -> (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128); # Bruno Berselli, Feb 12 2018
-
[(2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128: n in [0..50]]; // Bruno Berselli, Feb 12 2018
-
CoefficientList[Series[x (7 + 8 x + 11 x^2 + 13 x^3)/((1 - x)^4*(1 + x)^4), {x, 0, 46}], x] (* Michael De Vlieger, Dec 18 2017 *)
LinearRecurrence[{0,4,0,-6,0,4,0,-1},{0,7,8,39,45,114,132,250},50] (* Harvey P. Dale, May 01 2018 *)
Rest[Flatten[Table[With[{c=(n(n+1))/2},{c*(6n+1),c*(7n+1)}],{n,0,30}]]] (* Harvey P. Dale, Oct 11 2020 *)
-
concat(0, Vec(x*(7 + 8*x + 11*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)^4) + O(x^80))) \\ Colin Barker, Dec 18 2017
Showing 1-7 of 7 results.
Comments