cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A253289 G.f.: Product_{k>=1} 1/(1-x^k)^(2*k-1).

Original entry on oeis.org

1, 1, 4, 9, 22, 46, 103, 208, 431, 849, 1671, 3195, 6079, 11321, 20937, 38146, 68931, 123121, 218212, 383019, 667425, 1153544, 1980268, 3375394, 5717773, 9624541, 16108496, 26807662, 44379189, 73089219, 119789926, 195401275, 317309532, 513025167, 826000651
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

a(n) is the number of partitions of n where there are 2*k-1 sorts of parts k. - Joerg Arndt, Aug 15 2020

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n-1): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((2*sigma[2](k) - sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]
    (* Using EulerTransforms from 'Transforms'. *)
    Prepend[EulerTransform[Table[2k + 1, {k, 0, 20}]], 1] (* Peter Luschny, Aug 15 2020 *)

Formula

a(n) ~ 2^(1/9) * Zeta(3)^(1/18) * exp(1/6 - Pi^4/(864*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 3^(1/2) * n^(5/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018
Euler transform of A005408 (the odd numbers). - Georg Fischer, Aug 15 2020
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) - sigma_1(k))*x^k/k) = 1 + x + 4*x^2 + 9*x^3 + 22*x^4 + .... - Peter Bala, Jan 16 2025

A255836 G.f.: Product_{k>=1} (1+x^k)^(3*k+1).

Original entry on oeis.org

1, 4, 13, 42, 117, 310, 785, 1896, 4433, 10062, 22248, 48080, 101821, 211682, 432795, 871520, 1730491, 3391894, 6568996, 12580316, 23841774, 44742634, 83193865, 153347110, 280336704, 508499474, 915540681, 1636805438, 2906642396, 5128530946, 8993376689
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (3888*Zeta(3)) + Pi^2 * n^(1/3) / (6^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(17/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.

A120844 Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.

Original entry on oeis.org

1, 3, 11, 32, 90, 231, 576, 1363, 3141, 7003, 15261, 32468, 67788, 138892, 280103, 556302, 1089991, 2108332, 4030649, 7620671, 14261450, 26431346, 48544170, 88393064, 159654022, 286149924, 509137464, 899603036, 1579014769
Offset: 0

Views

Author

Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 06 2015 after Alois P. Heinz
    # alternative program
    with(numtheory):
    series(exp(add((2*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: exp( Sum_{n>0} (3*x^n - x^(2*n)) / (n*(1-x^n)^2) ).
a(n) ~ Zeta(3)^(7/18) * exp(1/6 - Pi^4/(864*Zeta(3)) + Pi^2 * n^(1/3)/(3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(2/9) * 3^(1/2) * Pi * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
From Peter Bala, Jan 16 2025: (Start)
G.f.: 1/Product_{k >= 1} (1 - x^k)^(2*k+1).
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) + sigma_1(k))*x^k/k) = 1 + 3*x + 11*x^2 + 32*x^3 + 90*x^4 + 231*x^5 + .... (End)

A255803 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+2).

Original entry on oeis.org

1, 5, 23, 86, 295, 926, 2748, 7732, 20891, 54401, 137355, 337249, 808043, 1893402, 4348634, 9805669, 21741925, 47463473, 102133056, 216841459, 454648373, 942113618, 1930779697, 3915946921, 7864385266, 15647363323, 30858285440, 60345383394, 117065924679
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015

Crossrefs

Cf. A000219 (k), A005380 (k+1), A052847 (k-1), A120844 (2k+1), A253289 (2k-1), A255802 (2k+3), A255271 (3k+1).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+2): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((3*sigma[2](k) + 2*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(7/12) * 3^(1/12) * exp(1/4 - Pi^4/(324*Zeta(3)) + Pi^2 * n^(1/3) / (3^(4/3) * (2*Zeta(3))^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(11/12) * Pi^(3/2) * n^(13/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (3*sigma_2(k) + 2*sigma_1(k))*x^k/k) = 1 + 5*x + 23*x^2 + 86*x^3 + 295*x^4 + .... - Peter Bala, Jan 16 2025

A363601 Number of partitions of n where there are k^2 - 1 kinds of parts k.

Original entry on oeis.org

1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))

Formula

G.f.: 1/Product_{k>=1} (1-x^k)^(k^2-1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092348(k) * a(n-k).
G.f.: exp(Sum_{k >= 1} (sigma_3(k) - sigma_1(k))*x^k/k) = 1 + 3*x^2 + 8*x^3 + 21*x^4 + 48*x^5 + .... - Peter Bala, Jan 16 2025

Extensions

Name suggested by Joerg Arndt, Jun 11 2023

A255802 G.f.: Product_{k>=1} 1/(1-x^k)^(2*k+3).

Original entry on oeis.org

1, 5, 22, 79, 259, 777, 2201, 5911, 15239, 37865, 91224, 213741, 488759, 1093173, 2396934, 5160756, 10928181, 22787949, 46848176, 95046026, 190466354, 377295743, 739319876, 1433974869, 2754597217, 5243308562, 9894376295, 18517966608, 34386781020, 63378252332
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+3): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((2*sigma[2](k) + 3*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+3),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(13/18) * exp(1/6 - Pi^4/(96*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(5/9) * 3^(1/2) * Pi^2 * n^(11/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) + 3*sigma_1(k))*x^k/k) = 1 + 5*x + 22*x^2 + 29*x^3 + 777*x^4 + .... - Peter Bala, Jan 16 2025
Showing 1-6 of 6 results.