A255835
G.f.: Product_{k>=1} (1+x^k)^(2*k-1).
Original entry on oeis.org
1, 1, 3, 8, 15, 34, 67, 133, 255, 486, 901, 1649, 2984, 5312, 9373, 16342, 28221, 48283, 81928, 137858, 230278, 381919, 629156, 1029933, 1675856, 2711288, 4362575, 6983196, 11122327, 17630798, 27820283, 43706461, 68375137, 106534093, 165340844, 255643289
Offset: 0
-
nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]
A217093
Number of partitions of n objects of 3 colors.
Original entry on oeis.org
1, 3, 12, 38, 117, 330, 906, 2367, 6027, 14873, 35892, 84657, 196018, 445746, 997962, 2201438, 4792005, 10300950, 21889368, 46012119, 95746284, 197344937, 403121547, 816501180, 1640549317, 3271188702, 6475456896, 12730032791, 24861111315, 48246729411, 93065426256
Offset: 0
We represent each summand, k, in a partition of n as k identical objects. Then we color each object. We have no regard for the order of the colored objects.
a(2) = 12 because we have: ww; wg; wb; gg; gb; bb; w + w; w + g; w + b; g + g; g + b; b + b, where the 3 colors are white w, gray g, and black b.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- S. Benvenuti, B. Feng, A. Hanany and Y. H. He, Counting BPS operators in gauge theories: Quivers, syzygies and plethystics, arXiv:hep-th/0608050, Aug 2006, p.42.
- Carlos A. A. Florentino, Plethystic exponential calculus and permutation polynomials, arXiv:2105.13049 [math.CO], 2021. Mentions this sequence.
- Vaclav Kotesovec, Graph - The asymptotic ratio
Cf.
A005380,
A120844,
A253289,
A255050,
A255052,
A255802,
A255803,
A255835,
A255836,
A363601,
A363602.
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*binomial(d+2, 2), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 26 2012
with(numtheory):
series(exp(add(((1/2)*sigma[3](k) + (3/2)*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
-
nn=30; p=Product[1/(1- x^i)^Binomial[i+2,2],{i,1,nn}]; CoefficientList[Series[p,{x,0,nn}],x]
-
from functools import lru_cache
from sympy import divisors
@lru_cache(maxsize=None)
def A217093_aux(n): return sum(d*(d+1)*(d+2)>>1 for d in divisors(n,generator=True))
@lru_cache(maxsize=None)
def A217093(n): return 1 if n == 0 else (A217093_aux(n)+sum(A217093_aux(k)*A217093(n-k) for k in range(1,n)))//n # Chai Wah Wu, Mar 19 2025
A120844
Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.
Original entry on oeis.org
1, 3, 11, 32, 90, 231, 576, 1363, 3141, 7003, 15261, 32468, 67788, 138892, 280103, 556302, 1089991, 2108332, 4030649, 7620671, 14261450, 26431346, 48544170, 88393064, 159654022, 286149924, 509137464, 899603036, 1579014769
Offset: 0
Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006
Cf.
A000203,
A001157,
A005380,
A217093,
A253289,
A255271,
A255802,
A255803,
A255834,
A255835,
A255836,
A363601,
A363602.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 06 2015 after Alois P. Heinz
# alternative program
with(numtheory):
series(exp(add((2*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
-
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 27 2015 *)
A255803
G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+2).
Original entry on oeis.org
1, 5, 23, 86, 295, 926, 2748, 7732, 20891, 54401, 137355, 337249, 808043, 1893402, 4348634, 9805669, 21741925, 47463473, 102133056, 216841459, 454648373, 942113618, 1930779697, 3915946921, 7864385266, 15647363323, 30858285440, 60345383394, 117065924679
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+2): seq(a(n), n=0..50); # after Alois P. Heinz
with(numtheory):
series(exp(add((3*sigma[2](k) + 2*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
-
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]
A363601
Number of partitions of n where there are k^2 - 1 kinds of parts k.
Original entry on oeis.org
1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0
Cf.
A005380,
A023871,
A052847,
A092348,
A120844,
A217093,
A253289,
A255271,
A255802,
A255803,
A255835,
A255836,
A363602.
-
with(numtheory):
series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51):
seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
-
my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))
A255271
G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+1).
Original entry on oeis.org
1, 4, 17, 58, 186, 546, 1532, 4082, 10502, 26096, 63075, 148536, 342096, 771744, 1709299, 3721792, 7978972, 16860328, 35155475, 72393580, 147351112, 296657196, 591141762, 1166570452, 2281101159, 4421781894, 8500806341, 16214549920, 30696683828
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+1): seq(a(n), n=0..50); # after Alois P. Heinz
with(numtheory):
series(exp(add((3*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
-
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+1),{k,1,nmax}],{x,0,nmax}],x]
A255802
G.f.: Product_{k>=1} 1/(1-x^k)^(2*k+3).
Original entry on oeis.org
1, 5, 22, 79, 259, 777, 2201, 5911, 15239, 37865, 91224, 213741, 488759, 1093173, 2396934, 5160756, 10928181, 22787949, 46848176, 95046026, 190466354, 377295743, 739319876, 1433974869, 2754597217, 5243308562, 9894376295, 18517966608, 34386781020, 63378252332
Offset: 0
Cf.
A005380,
A120844,
A217093,
A253289,
A255271,
A255803,
A255834,
A255835,
A255836,
A363601,
A363602.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+3): seq(a(n), n=0..50); # after Alois P. Heinz
with(numtheory):
series(exp(add((2*sigma[2](k) + 3*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
-
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+3),{k,1,nmax}],{x,0,nmax}],x]
A261452
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).
Original entry on oeis.org
1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
A305654
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).
Original entry on oeis.org
1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
A295828
Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k*(2*k-1)).
Original entry on oeis.org
1, 2, 15, 58, 235, 862, 3122, 10664, 35639, 115164, 363806, 1122050, 3393316, 10068006, 29374056, 84347944, 238713339, 666419456, 1836986443, 5003473866, 13476019215, 35912177618, 94746481999, 247597696802, 641205816641, 1646268490598, 4192059724668, 10590937903412, 26556243826240
Offset: 0
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^(2 k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[2 d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
Showing 1-10 of 11 results.
Comments