cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255835 G.f.: Product_{k>=1} (1+x^k)^(2*k-1).

Original entry on oeis.org

1, 1, 3, 8, 15, 34, 67, 133, 255, 486, 901, 1649, 2984, 5312, 9373, 16342, 28221, 48283, 81928, 137858, 230278, 381919, 629156, 1029933, 1675856, 2711288, 4362575, 6983196, 11122327, 17630798, 27820283, 43706461, 68375137, 106534093, 165340844, 255643289
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(2*k-1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (2592*Zeta(3)) - Pi^2 * n^(1/3) / (12*(3*Zeta(3))^(1/3)) + 3^(4/3)/2 * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Jun 07 2018

A217093 Number of partitions of n objects of 3 colors.

Original entry on oeis.org

1, 3, 12, 38, 117, 330, 906, 2367, 6027, 14873, 35892, 84657, 196018, 445746, 997962, 2201438, 4792005, 10300950, 21889368, 46012119, 95746284, 197344937, 403121547, 816501180, 1640549317, 3271188702, 6475456896, 12730032791, 24861111315, 48246729411, 93065426256
Offset: 0

Views

Author

Geoffrey Critzer, Sep 26 2012

Keywords

Comments

a(n) is also the number of unlabeled simple graphs with n nodes of 3 colors whose components are complete graphs.
Number of (integer) partitions of n into 3 sorts of part 1, 6 sorts of part 2, 10 sorts of part 3, ..., (k+2)*(k+1)/2 sorts of part k. - Joerg Arndt, Dec 07 2014
In general the g.f. 1 / prod(n>=1, (1-x^k)^m(k) ) gives the number of (integer) partitions where there are m(k) sorts of part k. - Joerg Arndt, Mar 10 2015

Examples

			We represent each summand, k, in a partition of n as k identical objects. Then we color each object. We have no regard for the order of the colored objects.
a(2) = 12 because we have: ww; wg; wb; gg; gb; bb; w + w; w + g; w + b; g + g; g + b; b + b, where the 3 colors are white w, gray g, and black b.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*binomial(d+2, 2), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 26 2012
    with(numtheory):
    series(exp(add(((1/2)*sigma[3](k) + (3/2)*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nn=30; p=Product[1/(1- x^i)^Binomial[i+2,2],{i,1,nn}]; CoefficientList[Series[p,{x,0,nn}],x]
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A217093_aux(n): return sum(d*(d+1)*(d+2)>>1 for d in divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A217093(n): return 1 if n == 0 else (A217093_aux(n)+sum(A217093_aux(k)*A217093(n-k) for k in range(1,n)))//n # Chai Wah Wu, Mar 19 2025

Formula

G.f.: Product_{i>=1} 1/(1-x^i)^binomial(i+2,2).
EULER transform of 3, 6, 10, 15, ... .
Generally for the number of partitions of k colors the generating function is Product_{i>=1} 1/(1-x^i)^binomial(i+k-1,k-1).
a(n) ~ Pi^(1/8) * exp(1/8 + 3^4 * 5^2 * Zeta(3)^3 / (2*Pi^8) - 31*Zeta(3) / (8*Pi^2) + 5^(1/4) * Pi * n^(1/4) / 6^(3/4) - 3^(13/4) * 5^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4) * Pi^5) + 3^(3/2) * 5^(1/2) * Zeta(3) * n^(1/2) / (2^(1/2) * Pi^2) + 2^(7/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4))) / (A^(3/2) * 2^(73/32) * 15^(9/32) * n^(25/32)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 08 2015
G.f.: exp(Sum_{k >= 1} ((1/2)*sigma_3(k) + (3/2)*sigma_2(k) + sigma_1(k))*x^k/k) = 1 + 3*x + 12*x^2 + 38*x^3 + 117*x^4 + .... - Peter Bala, Jan 16 2025

A120844 Number of multi-trace BPS operators for the quiver gauge theory of the orbifold C^2/Z_2.

Original entry on oeis.org

1, 3, 11, 32, 90, 231, 576, 1363, 3141, 7003, 15261, 32468, 67788, 138892, 280103, 556302, 1089991, 2108332, 4030649, 7620671, 14261450, 26431346, 48544170, 88393064, 159654022, 286149924, 509137464, 899603036, 1579014769
Offset: 0

Views

Author

Amihay Hanany (hanany(AT)mit.edu), Aug 25 2006

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 06 2015 after Alois P. Heinz
    # alternative program
    with(numtheory):
    series(exp(add((2*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: exp( Sum_{n>0} (3*x^n - x^(2*n)) / (n*(1-x^n)^2) ).
a(n) ~ Zeta(3)^(7/18) * exp(1/6 - Pi^4/(864*Zeta(3)) + Pi^2 * n^(1/3)/(3 * 2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(2/9) * 3^(1/2) * Pi * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
From Peter Bala, Jan 16 2025: (Start)
G.f.: 1/Product_{k >= 1} (1 - x^k)^(2*k+1).
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) + sigma_1(k))*x^k/k) = 1 + 3*x + 11*x^2 + 32*x^3 + 90*x^4 + 231*x^5 + .... (End)

A255803 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+2).

Original entry on oeis.org

1, 5, 23, 86, 295, 926, 2748, 7732, 20891, 54401, 137355, 337249, 808043, 1893402, 4348634, 9805669, 21741925, 47463473, 102133056, 216841459, 454648373, 942113618, 1930779697, 3915946921, 7864385266, 15647363323, 30858285440, 60345383394, 117065924679
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015

Crossrefs

Cf. A000219 (k), A005380 (k+1), A052847 (k-1), A120844 (2k+1), A253289 (2k-1), A255802 (2k+3), A255271 (3k+1).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+2): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((3*sigma[2](k) + 2*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(7/12) * 3^(1/12) * exp(1/4 - Pi^4/(324*Zeta(3)) + Pi^2 * n^(1/3) / (3^(4/3) * (2*Zeta(3))^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(11/12) * Pi^(3/2) * n^(13/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (3*sigma_2(k) + 2*sigma_1(k))*x^k/k) = 1 + 5*x + 23*x^2 + 86*x^3 + 295*x^4 + .... - Peter Bala, Jan 16 2025

A363601 Number of partitions of n where there are k^2 - 1 kinds of parts k.

Original entry on oeis.org

1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))

Formula

G.f.: 1/Product_{k>=1} (1-x^k)^(k^2-1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092348(k) * a(n-k).
G.f.: exp(Sum_{k >= 1} (sigma_3(k) - sigma_1(k))*x^k/k) = 1 + 3*x^2 + 8*x^3 + 21*x^4 + 48*x^5 + .... - Peter Bala, Jan 16 2025

Extensions

Name suggested by Joerg Arndt, Jun 11 2023

A255271 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k+1).

Original entry on oeis.org

1, 4, 17, 58, 186, 546, 1532, 4082, 10502, 26096, 63075, 148536, 342096, 771744, 1709299, 3721792, 7978972, 16860328, 35155475, 72393580, 147351112, 296657196, 591141762, 1166570452, 2281101159, 4421781894, 8500806341, 16214549920, 30696683828
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(m/36 + c/6 + 1/6) * exp(m/12 - c^2 * Pi^4 / (432*m*Zeta(3)) + c * Pi^2 * n^(1/3) / (3 * 2^(4/3) * (m*Zeta(3))^(1/3)) + 3 * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(2/3)) / (A^m * 2^(c/3 + 1/3 - m/36) * 3^(1/2) * Pi^((c+1)/2) * n^(m/36 + c/6 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 08 2015

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 3*n+1): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((3*sigma[2](k) + sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k+1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(5/12) * exp(1/4 - Pi^4/(1296*Zeta(3)) + Pi^2 * n^(1/3) / (6^(4/3) * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A^3 * 2^(7/12) * 3^(1/12) * Pi * n^(11/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (3*sigma_2(k) + sigma_1(k))*x^k/k) = 1 + 4*x + 17*x^2 + 58*x^3 + 186*x^4 + .... - Peter Bala, Jan 16 2025

A255802 G.f.: Product_{k>=1} 1/(1-x^k)^(2*k+3).

Original entry on oeis.org

1, 5, 22, 79, 259, 777, 2201, 5911, 15239, 37865, 91224, 213741, 488759, 1093173, 2396934, 5160756, 10928181, 22787949, 46848176, 95046026, 190466354, 377295743, 739319876, 1433974869, 2754597217, 5243308562, 9894376295, 18517966608, 34386781020, 63378252332
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 07 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> 2*n+3): seq(a(n), n=0..50); # after Alois P. Heinz
    with(numtheory):
    series(exp(add((2*sigma[2](k) + 3*sigma[1](k))*x^k/k, k = 1..30)), x, 31):
    seq(coeftayl(%, x = 0, n), n = 0..30); # Peter Bala, Jan 16 2025
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(2*k+3),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ Zeta(3)^(13/18) * exp(1/6 - Pi^4/(96*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)) / (A^2 * 2^(5/9) * 3^(1/2) * Pi^2 * n^(11/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
G.f.: exp(Sum_{k >= 1} (2*sigma_2(k) + 3*sigma_1(k))*x^k/k) = 1 + 5*x + 22*x^2 + 29*x^3 + 777*x^4 + .... - Peter Bala, Jan 16 2025

A261452 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).

Original entry on oeis.org

1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A253289 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(1/3) * (7*Zeta(3))^(1/18) * exp(1/6 - Pi^4/(672*Zeta(3)) - Pi^2 * n^(1/3)/(4*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * sqrt(3) * n^(5/9)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A305654 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).

A295828 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k*(2*k-1)).

Original entry on oeis.org

1, 2, 15, 58, 235, 862, 3122, 10664, 35639, 115164, 363806, 1122050, 3393316, 10068006, 29374056, 84347944, 238713339, 666419456, 1836986443, 5003473866, 13476019215, 35912177618, 94746481999, 247597696802, 641205816641, 1646268490598, 4192059724668, 10590937903412, 26556243826240
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Comments

Euler transform of A002939.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^(2 k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[2 d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002939(k).
a(n) ~ exp(2^(5/2) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) * sqrt(15*n) / Pi^2 - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(3/2) * Pi^5) - Zeta(3) / Pi^2 - 75*Zeta(3)^3 / (2*Pi^8) - 1/6) * A^2 / (2^(4/3) * 15^(1/12) * Pi^(1/6) * n^(7/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017
Showing 1-10 of 11 results. Next