cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255499 a(n) = (n^4 + 2*n^3 - n^2)/2.

Original entry on oeis.org

0, 1, 14, 63, 184, 425, 846, 1519, 2528, 3969, 5950, 8591, 12024, 16393, 21854, 28575, 36736, 46529, 58158, 71839, 87800, 106281, 127534, 151823, 179424, 210625, 245726, 285039, 328888, 377609, 431550, 491071, 556544, 628353, 706894, 792575, 885816, 987049, 1096718, 1215279, 1343200
Offset: 0

Views

Author

N. J. A. Sloane, Mar 13 2015

Keywords

Crossrefs

Cf. A229738.

Programs

  • Magma
    [n^4/2+n^3-n^2/2: n in [0..40]] // Vincenzo Librandi, Sep 05 2015
    
  • Mathematica
    Table[n^4/2 + n^3 - n^2/2, {n, 0, 60}] (* or *) CoefficientList[Series[x (1 + 9 x + 3 x^2 - x^3)/(1 - x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 05 2015 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,14,63,184},50] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    a(n) = n^4/2+n^3-n^2/2; \\ Michel Marcus, Sep 05 2015
    
  • Sage
    [n^2*(n^2 +2*n -1)/2 for n in (0..40)] # G. C. Greubel, Sep 24 2021

Formula

G.f.: x*(1+9*x+3*x^2-x^3)/(1-x)^5. - Vincenzo Librandi, Sep 05 2015
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Vincenzo Librandi, Sep 05 2015
a(n) = Sum_{k=n..n+n^2-1} k (the sum of the first n^2 integers starting with n). - Matthew Niemiro, Jun 26 2020
E.g.f.: (x/2)*(2 +12*x +8*x^2 +x^3)*exp(x). - G. C. Greubel, Sep 24 2021