cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000959 Lucky numbers.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303
Offset: 1

Views

Author

N. J. A. Sloane; entry updated Mar 07 2008

Keywords

Comments

An interesting general discussion of the phenomenon of 'random primes' (generalizing the lucky numbers) occurs in Hawkins (1958). Heyde (1978) proves that Hawkins' random primes do not only almost always satisfy the Prime Number Theorem but also the Riemann Hypothesis. - Alf van der Poorten, Jun 27 2002
Bui and Keating establish an asymptotic formula for the number of k-difference twin primes, and more generally to all l-tuples, of Hawkins primes, a probabilistic model of the Eratosthenes sieve. The formula for k = 1 was obtained by Wunderlich [Acta Arith. 26 (1974), 59 - 81]. - Jonathan Vos Post, Mar 24 2009. (This is quoted from the abstract of the Bui-Keating (2006) article, Joerg Arndt, Jan 04 2014)
It appears that a 1's line is formed, as in the Gilbreath's conjecture, if we use 2 (or 4), 3, 5 (differ of 7), 9, 13, 15, 21, 25, ... instead of A000959 1, 3, 7, 9, 13, 15, 21, 25, ... - Eric Desbiaux, Mar 25 2010
The Mersenne primes 2^p - 1 (= A000668, p in A000043) are in this sequence for p = 2, 3, 5, 7, 13, 17, and 19, but not for the following exponents p = 31, 61, and 89. - M. F. Hasler, May 06 2025

References

  • Martin Gardner, Gardner's Workout, Chapter 21 "Lucky Numbers and 2187" pp. 149-156 A. K. Peters MA 2002.
  • Richard K. Guy, Unsolved Problems in Number Theory, C3.
  • C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 99.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. L. Stein and P. R. Stein, Tables of the Number of Binary Decompositions of All Even Numbers Less Than 200,000 into Prime Numbers and Lucky Numbers. Report LA-3106, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Sep 1964.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 116.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 114.

Crossrefs

Main diagonal of A258207.
Column 1 of A255545. (cf. also arrays A255543, A255551).
Cf. A050505 (complement).
Cf. A145649 (characteristic function).
Cf. A031883 (first differences), A254967 (iterated absolute differences), see also A054978.
Cf. A109497 (works as a left inverse function).
The Gilbreath transform is A054978 - see also A362460, A362461, A362462.

Programs

  • Haskell
    a000959 n = a000959_list !! (n-1)
    a000959_list =  1 : sieve 2 [1,3..] where
       sieve k xs = z : sieve (k + 1) (lucky xs) where
          z = xs !! (k - 1 )
          lucky ws = us ++ lucky vs where
                (us, _:vs) = splitAt (z - 1) ws
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Haskell
    -- Also see links.
    (C++) // See Wilson link, Nov 14 2012
    
  • Maple
    ## luckynumbers(n) returns all lucky numbers from 1 to n. ## Try n=10^5 just for fun. luckynumbers:=proc(n) local k, Lnext, Lprev; Lprev:=[$1..n]; for k from 1 do if k=1 or k=2 then Lnext:= map(w-> Lprev[w],remove(z -> z mod Lprev[2] = 0,[$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; else Lnext:= map(w-> Lprev[w],remove(z -> z mod Lprev[k] = 0,[$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; fi; od; return Lnext; end: # Walter Kehowski, Jun 05 2008; typo fixed by Robert Israel, Nov 19 2014
    # Alternative
    A000959List := proc(mx) local i, L, n, r;
    L:= [seq(2*i+1, i=0..mx)]:
    for n from 2 while n < nops(L) do
      r:= L[n];
      L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
    od: L end:
    A000959List(10^3); # Robert Israel, Nov 19 2014
  • Mathematica
    luckies = 2*Range@200 - 1; f[n_] := Block[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{k}, {k, k, Length@luckies, k}]]]; Do[f@n, {n, 2, 30}]; luckies (* Robert G. Wilson v, May 09 2006 *)
    sieveMax = 10^6; luckies = Range[1, sieveMax, 2]; sieve[n_] := Module[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{i}, {i, k, Length[luckies], k}]]]; n = 1; While[luckies[[n]] < Length[luckies], n++; sieve[n]]; luckies
    L = Table[2*i + 1, {i, 0, 10^3}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; L (* Jean-François Alcover, Mar 15 2016, after Robert Israel *)
  • PARI
    A000959_upto(nMax)={my(v=vectorsmall(nMax\2,k,2*k-1),i=1,q);while(v[i++]<=#v,v=vecextract(v,2^#v-1-(q=1<M. F. Hasler, Sep 22 2013, improved Jan 20 2020
    
  • Python
    def lucky(n):
        L = list(range(1, n + 1, 2))
        j = 1
        while j <= len(L) - 1 and L[j] <= len(L):
            del L[L[j]-1::L[j]]
            j += 1
        return L
    # Robert FERREOL, Nov 19 2014, corrected by F. Chapoton, Mar 29 2020, performance improved by Ely Golden, Aug 18 2022
    
  • Scheme
    (define (A000959 n) ((rowfun_n_for_A000959sieve n) n)) ;; Code for rowfun_n_for_A000959sieve given in A255543.
    ;; Antti Karttunen, Feb 26 2015

Formula

Start with the natural numbers. Delete every 2nd number, leaving 1 3 5 7 ...; the 2nd number remaining is 3, so delete every 3rd number, leaving 1 3 7 9 13 15 ...; now delete every 7th number, leaving 1 3 7 9 13 ...; now delete every 9th number; etc.
a(n) = A254967(n-1, n-1). - Reinhard Zumkeller, Feb 11 2015
a(n) = A258207(n,n). [Where A258207 is a square array constructed from the numbers remaining after each step described above.] - Antti Karttunen, Aug 06 2015
A145649(a(n)) = 1; complement of A050505. - Reinhard Zumkeller, Oct 15 2008
Other identities from Antti Karttunen, Feb 26 2015: (Start)
For all n >= 1, A109497(a(n)) = n.
For all n >= 1, a(n) = A000040(n) + A032600(n).
For all n >= 2, a(n) = A255553(A000040(n)). (End)

A255551 Lucky / Unlucky array, shifted version, read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 5, 7, 8, 11, 19, 9, 10, 17, 39, 27, 13, 12, 23, 61, 57, 45, 15, 14, 29, 81, 91, 97, 55, 21, 16, 35, 103, 121, 147, 117, 85, 25, 18, 41, 123, 153, 199, 181, 177, 109, 31, 20, 47, 145, 183, 253, 243, 277, 225, 139, 33, 22, 53, 165, 217, 301, 315, 369, 345, 295, 157, 37, 24, 59, 187, 247, 351, 379, 471, 465, 447, 325, 175, 43
Offset: 2

Views

Author

Antti Karttunen, Feb 26 2015

Keywords

Comments

Note how in comparison to A255545, the even numbers on the first row have been shifted one step left, "pushing" term 1 out of the array proper. This was done to obtain a better alignment with arrays like A083221 and A255127 associated with other sieves, from which one may then induce permutations like A255553 by cross-referencing.
The starting offset of the sequence giving the terms in square array is 2. However, we can tacitly assume that a(1) = 1 when the sequence is used one-dimensionally as a permutation of natural numbers.

Examples

			The top left corner of the array:
   2,   4,   6,   8,  10,  12,  14,   16,   18,   20,   22,   24,   26,   28,   30
   3,   5,  11,  17,  23,  29,  35,   41,   47,   53,   59,   65,   71,   77,   83
   7,  19,  39,  61,  81, 103, 123,  145,  165,  187,  207,  229,  249,  271,  291
   9,  27,  57,  91, 121, 153, 183,  217,  247,  279,  309,  343,  373,  405,  435
  13,  45,  97, 147, 199, 253, 301,  351,  403,  453,  507,  555,  609,  661,  709
  15,  55, 117, 181, 243, 315, 379,  441,  505,  571,  633,  697,  759,  825,  889
  21,  85, 177, 277, 369, 471, 567,  663,  757,  853,  949, 1045, 1141, 1239, 1333
  25, 109, 225, 345, 465, 589, 705,  829,  945, 1063, 1185, 1305, 1423, 1549, 1669
  31, 139, 295, 447, 603, 765, 913, 1075, 1227, 1377, 1537, 1689, 1843, 1999, 2155
  33, 157, 325, 493, 667, 835, 999, 1177, 1347, 1513, 1687, 1861, 2029, 2205, 2367
...
		

Crossrefs

Inverse: A255552.
Variant of array A255545. (See also A255543).
Row 1: A005843 (even numbers).
Column 1: 2 followed by A000959(2..) (Lucky numbers from their second term onward).
Main diagonal: A255550.
Similar arrays: A083221, A255127.
Associated permutations: A255553, A255554.

Programs

Formula

For row = 1, A(row,col) = 2*col; For row > 1 and col = 1, A(row,col) = A000959(row); otherwise, A(row,col) = A255543(row,col-1).

A219178 a(n) = first unlucky number removed at the n-th stage of Lucky sieve.

Original entry on oeis.org

2, 5, 19, 27, 45, 55, 85, 109, 139, 157, 175, 213, 255, 265, 337, 363, 387, 411, 423, 457, 513, 547, 597, 637, 675, 715, 789, 807, 843, 871, 907, 987, 1033, 1083, 1113, 1125, 1267, 1297, 1315, 1371, 1407, 1465, 1515, 1555, 1609, 1651, 1671, 1707, 1851, 1873, 1927, 1969
Offset: 1

Views

Author

Phil Carmody, Nov 15 2012

Keywords

Comments

First numbers removed by each lucky number in the lucky number sieve. - This is the original definition of the sequence, still valid from a(2) onward.
a(1) = 2, because at the first stage of Lucky sieve, all even numbers are removed, of which 2 is the first one. - Antti Karttunen, Feb 26 2015

Examples

			1 and 2 are a special case in the lucky number sieve, (1 is the lucky number, but every 2nd element is removed) so are ignored [in the original version of the sequence, which started from a(2). Now we have a(1) = 2. - _Antti Karttunen_, Feb 26 2015]. The 2nd lucky number, 3, removes { 5, 11, ... } from the list, so a(2) = 5. The 3rd lucky number, 7, removes { 19, 39, ... } from the list, so a(3)=19.
		

Crossrefs

Column 1 of A255543, Column 2 of A255545 (And apart from the first term, also column 2 of A255551).

Programs

  • Mathematica
    rows = 52; cols = 1; L = 2 Range[0, 10^4] + 1; A = Join[{2 Range[cols]}, Reap[For[n = 2, n <= rows, r = L[[n++]]; L0 = L; L = ReplacePart[L, Table[r i -> Nothing, {i, 1, Length[L]/r}]]; Sow[Complement[L0, L][[1 ;; cols]]]]][[2, 1]]]; Table[A[[n, 1]], {n, 1, rows}] (* Jean-François Alcover, Mar 15 2016 *)
  • Scheme
    (define (A219178 n) (A255543bi n 1)) ;; Code for A255543bi given in A255543.

Formula

From Antti Karttunen, Feb 26 2015: (Start)
a(n) = A255543(n,1).
Other identities.
For all n >= 2, a(n) = A255553(A001248(n)).
(End)

Extensions

Term a(1) = 2 prepended, without changing the rest of sequence. Name changed, with the original, more restrictive definition moved to the Comments section. - Antti Karttunen, Feb 26 2015

A255550 Main diagonal of array A255551.

Original entry on oeis.org

2, 5, 39, 91, 199, 315, 567, 829, 1227, 1513, 1953, 2569, 3277, 3769, 5119, 5925, 6607, 7539, 8319, 9375, 11007, 12511, 14103, 15801, 17593, 19165, 22213, 23617, 25467, 26967, 29347, 32733, 35809, 38085, 40953, 42915, 49093, 51787, 54055, 57459, 60409, 64057, 68433, 71637, 76299, 79719, 82545, 86133, 94921, 98037, 102745
Offset: 1

Views

Author

Antti Karttunen, Feb 26 2015

Keywords

Comments

Equally, 2 followed by the first subdiagonal of A255543.

Crossrefs

Formula

a(n) = A255551(n,n).
a(1) = 2; for n > 1: a(n) = A255543(n,n-1).
Other identities.
For all n >= 1, a(n) = A255553(A083141(n)).

A255554 Permutation of natural numbers: a(n) = A083221(A255552(n)).

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 5, 8, 7, 10, 15, 12, 11, 14, 13, 16, 21, 18, 25, 20, 17, 22, 27, 24, 19, 26, 49, 28, 33, 30, 23, 32, 29, 34, 39, 36, 31, 38, 35, 40, 45, 42, 37, 44, 121, 46, 51, 48, 41, 50, 43, 52, 57, 54, 169, 56, 77, 58, 63, 60, 55, 62, 47, 64, 69, 66, 53, 68, 59, 70, 75, 72, 61, 74, 67, 76, 81, 78, 71, 80, 65, 82, 87, 84, 289, 86, 73, 88, 93, 90, 91, 92, 79
Offset: 1

Views

Author

Antti Karttunen, Feb 26 2015

Keywords

Comments

a(n) tells which number in array A083221, constructed from the sieve of Eratosthenes is at the same position where n is in array A255551 constructed from Lucky sieve. As both arrays have A005843 (even numbers) as their topmost row, this permutation fixes all of them.

Crossrefs

Programs

Formula

a(n) = A083221(A255552(n)).
Other identities:
a(2n) = 2n. [Fixes even numbers.]
For all n >= 1, a(A255550(n)) = A083141(n).
For all n >= 2, a(A000959(n)) = A000040(n).
For all n >= 2, a(A219178(n)) = A001248(n).

A260436 Permutation mapping from Ludic sieve to Lucky sieve: a(1) = 1, for n > 1: a(n) = A255551(A260738(n), A260739(n)).

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 9, 8, 5, 10, 13, 12, 15, 14, 11, 16, 21, 18, 19, 20, 17, 22, 25, 24, 31, 26, 23, 28, 33, 30, 27, 32, 29, 34, 39, 36, 37, 38, 35, 40, 43, 42, 49, 44, 41, 46, 51, 48, 61, 50, 47, 52, 63, 54, 45, 56, 53, 58, 57, 60, 67, 62, 59, 64, 81, 66, 69, 68, 65, 70, 73, 72, 55, 74, 71, 76, 75, 78, 103, 80, 77, 82, 79, 84, 91, 86, 83, 88
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2015

Keywords

Comments

a(n) tells which number in array A255551 (constructed from Lucky sieve) is at the same position where n is in array A255127 (constructed from Ludic sieve). This permutation fixes all even numbers because both arrays have A005843 as their topmost row.

Crossrefs

Inverse: A260435.
Similar permutations: A255408, A255128, A255551, A255553, A249817, A249818, A260742 (a more recursed variant).

Programs

Formula

Other identities. For all n >= 1:
a(A003309(n+2)) = A000959(n+1). [Maps odd Ludic numbers to Lucky numbers.]
a(2n) = 2n.
As a composition of related permutations:
a(n) = A255551(A255128(n)).
a(n) = A255553(A255408(n)).

A257731 Permutation of natural numbers: a(1) = 1, a(prime(n)) = lucky(1+a(n)), a(composite(n)) = unlucky(a(n)), where prime(n) = n-th prime number A000040, composite(n) = n-th composite number A002808 and lucky = A000959, unlucky = A050505.

Original entry on oeis.org

1, 3, 9, 2, 33, 5, 7, 14, 4, 45, 163, 8, 15, 11, 20, 6, 25, 59, 63, 203, 12, 22, 13, 17, 28, 10, 35, 78, 235, 83, 1093, 251, 18, 30, 19, 24, 31, 39, 16, 47, 67, 101, 43, 290, 107, 1283, 87, 309, 26, 41, 27, 34, 21, 42, 53, 23, 61, 88, 115, 128, 321, 57, 354, 137, 1499, 112, 349, 376, 36, 55, 1401, 38, 49, 46, 29, 56, 70, 32, 99, 81
Offset: 1

Views

Author

Antti Karttunen, May 06 2015

Keywords

Crossrefs

Inverse: A257732.
Related or similar permutations: A246377, A255421, A257726, A257733.
Cf. also A032600, A255553, A255554.
Differs from A257733 for the first time at n=19, where a(19) = 63, while A257733(19) = 203.

Formula

a(1) = 1; for n > 1: if A010051(n) = 1 [i.e., if n is a prime], then a(n) = A000959(1+a(A000720(n))), otherwise a(n) = A050505(a(A065855(n))).
As a composition of other permutations:
a(n) = A257726(A246377(n)).
a(n) = A257733(A255421(n)).

A257732 Permutation of natural numbers: a(1) = 1, a(lucky(n)) = prime(a(n-1)), a(unlucky(n)) = composite(a(n)), where lucky(n) = n-th lucky number A000959, unlucky(n) = n-th unlucky number A050505, and prime = A000040, composite = A002808.

Original entry on oeis.org

1, 4, 2, 9, 6, 16, 7, 12, 3, 26, 14, 21, 23, 8, 13, 39, 24, 33, 35, 15, 53, 22, 56, 36, 17, 49, 51, 25, 75, 34, 37, 78, 5, 52, 27, 69, 101, 72, 38, 102, 50, 54, 43, 106, 10, 74, 40, 94, 73, 134, 83, 98, 55, 135, 70, 76, 62, 141, 18, 100, 57, 125, 19, 99, 175, 114, 41, 130, 167, 77, 176, 95, 89, 104, 137, 86, 184, 28, 149, 133, 80, 164, 30
Offset: 1

Views

Author

Antti Karttunen, May 06 2015

Keywords

Comments

In other words, a(1) = 1 and for n > 1, if n is the k-th lucky number larger than 1 [i.e., n = A000959(k+1)] then a(n) = nthprime(a(k)), otherwise, when n is the k-th unlucky number [i.e., n = A050505(k)], then a(n) = nthcomposite(a(k)).

Crossrefs

Inverse: A257731.
Related or similar permutations: A246378, A255422, A257725, A257734.
Cf. also A032600, A255553, A255554.

Formula

a(1) = 1; for n > 1: if A145649(n) = 1 [i.e., if n is lucky], then a(n) = A000040(a(A109497(n)-1)), otherwise a(n) = A002808(a(n-A109497(n))).
As a composition of other permutations:
a(n) = A246378(A257725(n)).
a(n) = A255422(A257734(n)).
Showing 1-8 of 8 results.