cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A073005 Decimal expansion of Gamma(1/3).

Original entry on oeis.org

2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
		

References

  • H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[1/3], 110]][[1]]
  • PARI
    default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
Equals (2^(1/3)*Pi*C*3^(1/2))^(1/3), where C = A118292 = Integral {0..1} 2/sqrt(1-x^3) is the transcendental butterfly constant. - Jan Lügering, Feb 08 2025

A256166 Decimal expansion of log(Gamma(1/4)).

Original entry on oeis.org

1, 2, 8, 8, 0, 2, 2, 5, 2, 4, 6, 9, 8, 0, 7, 7, 4, 5, 7, 3, 7, 0, 6, 1, 0, 4, 4, 0, 2, 1, 9, 7, 1, 7, 2, 9, 5, 9, 2, 5, 3, 7, 7, 5, 6, 5, 1, 1, 2, 8, 6, 0, 5, 5, 0, 4, 9, 9, 9, 8, 7, 0, 2, 2, 5, 3, 3, 9, 6, 1, 2, 6, 2, 6, 7, 5, 6, 9, 8, 8, 3, 6, 2, 1, 6, 0, 7, 3, 8, 1, 6, 4, 1, 7, 6, 1, 3, 8, 6, 6, 1, 8, 6, 7
Offset: 1

Views

Author

Keywords

Examples

			1.288022524698077457370610440219717295925377565112860...
		

Crossrefs

Cf. A068466 (Gamma(1/4)), A115252 (first Malmsten's integral).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

A255306 Decimal expansion of log(Gamma(1/8)).

Original entry on oeis.org

2, 0, 1, 9, 4, 1, 8, 3, 5, 7, 5, 5, 3, 7, 9, 6, 3, 4, 5, 3, 2, 0, 2, 9, 0, 5, 2, 1, 1, 6, 7, 0, 9, 9, 5, 8, 9, 9, 4, 8, 2, 8, 0, 9, 5, 2, 1, 3, 4, 4, 4, 9, 6, 0, 5, 1, 3, 1, 9, 6, 4, 8, 7, 2, 6, 7, 9, 3, 1, 4, 9, 5, 9, 2, 1, 0, 4, 8, 2, 4, 0, 5, 8, 2, 2, 2, 5, 9, 3, 1, 6, 5, 2, 6, 3, 4, 0, 0, 3, 0, 6, 4, 0, 0, 5
Offset: 1

Views

Author

Keywords

Examples

			2.0194183575537963453202905211670995899482809521344496...
		

Crossrefs

Cf. A203142 (Gamma(1/8)), A255188 (first generalized Stieltjes constant at 1/8, gamma_1(1/8)).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/8)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/8]],10,100][[1]]
  • PARI
    log(gamma(1/8))

A255888 Decimal expansion of log(Gamma(1/6)).

Original entry on oeis.org

1, 7, 1, 6, 7, 3, 3, 4, 3, 5, 0, 7, 8, 2, 4, 0, 4, 6, 0, 5, 2, 7, 8, 4, 6, 3, 0, 9, 5, 8, 7, 9, 3, 0, 7, 5, 7, 2, 7, 9, 3, 7, 7, 4, 8, 7, 1, 0, 5, 4, 0, 5, 5, 6, 3, 8, 7, 3, 1, 5, 6, 3, 1, 4, 7, 6, 3, 6, 8, 8, 6, 2, 5, 5, 0, 4, 5, 1, 4, 1, 0, 0, 3, 7, 0, 4, 6, 1, 6, 6, 3, 2, 5, 0, 8, 2, 4, 8, 1, 5, 8, 8, 4, 1, 9
Offset: 1

Views

Author

Keywords

Examples

			1.71673343507824046052784630958793075727937748710540556...
		

Crossrefs

Cf. A175379 (Gamma(1/6)), A254349 (first generalized Stieltjes constant at 1/6, gamma_1(1/6)).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/6)),100);
    evalf((1/2)*log(3)-(1/3)*log(2)-(1/2)*log(Pi)+2*log(GAMMA(1/3)), 120);
  • Mathematica
    RealDigits[Log[Gamma[1/6]],10,100][[1]]
  • PARI
    log(gamma(1/6))

Formula

Equals (1/2)*log(3) - (1/3)*log(2) - (1/2)*log(Pi) + 2*log(Gamma(1/3)).

A256066 Decimal expansion of log(Gamma(1/12)).

Original entry on oeis.org

2, 4, 4, 2, 2, 9, 7, 3, 1, 1, 1, 8, 2, 8, 8, 9, 7, 5, 0, 9, 1, 5, 5, 4, 9, 3, 5, 2, 1, 9, 4, 0, 8, 8, 5, 8, 2, 0, 8, 6, 8, 4, 1, 1, 0, 7, 0, 9, 1, 5, 0, 0, 7, 8, 3, 3, 2, 0, 5, 6, 0, 9, 3, 6, 2, 3, 1, 4, 7, 1, 9, 0, 2, 9, 5, 8, 1, 3, 5, 6, 0, 0, 6, 0, 0, 7, 9, 9, 4, 4, 1, 0, 2, 1, 1, 3, 2, 2, 5, 2, 1, 1, 4, 6, 6
Offset: 1

Views

Author

Keywords

Examples

			2.44229731118288975091554935219408858208684110709150...
		

Crossrefs

Cf. A203140 (Gamma(1/12)), A256165 (log(Gamma(1/3))), A256166 (log(Gamma(1/4))), A256167 (log(Gamma(1/5))), A255888 (log(Gamma(1/6))), A255306 (log(Gamma(1/8))), A255189 (first generalized Stieltjes constant at 1/12, gamma_1(1/12)).

Programs

  • Maple
    evalf(log(GAMMA(1/12)),100);
    evalf(-(1/4)*log(2)+(3/8)*log(3)+(1/2)*log(1+sqrt(3))-(1/2)*log(Pi)+log(GAMMA(1/4))+log(GAMMA(1/3)), 100);
  • Mathematica
    RealDigits[Log[Gamma[1/12]],10,100][[1]]
  • PARI
    log(gamma(1/12))

Formula

Equals -(1/4)*log(2) + (3/8)*log(3) + (1/2)*log(1+sqrt(3)) - (1/2)*log(Pi) + log(Gamma(1/4)) + log(Gamma(1/3)).

A256167 Decimal expansion of log(Gamma(1/5)).

Original entry on oeis.org

1, 5, 2, 4, 0, 6, 3, 8, 2, 2, 4, 3, 0, 7, 8, 4, 5, 2, 4, 8, 8, 1, 0, 5, 6, 4, 9, 3, 9, 2, 6, 3, 0, 2, 1, 9, 2, 5, 6, 5, 9, 3, 3, 7, 3, 7, 4, 0, 6, 4, 0, 3, 4, 7, 5, 1, 0, 4, 2, 8, 7, 2, 9, 1, 4, 6, 4, 9, 9, 1, 7, 9, 8, 2, 5, 1, 8, 0, 8, 8, 5, 3, 7, 3, 8, 8, 1, 8, 6, 6, 3, 3, 9, 2, 7, 8, 5, 5, 1, 6, 9, 9, 2, 6
Offset: 1

Views

Author

Keywords

Examples

			1.524063822430784524881056493926302192565933737406403...
		

Crossrefs

Cf. A175380 (Gamma(1/5)), A251866 (gamma_1(1/5)).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

A256609 Decimal expansion of log(Gamma(1/7)).

Original entry on oeis.org

1, 8, 7, 9, 1, 6, 9, 2, 7, 1, 5, 9, 5, 8, 3, 5, 8, 3, 6, 4, 5, 5, 9, 5, 6, 4, 0, 9, 3, 4, 5, 0, 7, 1, 0, 5, 4, 3, 9, 9, 5, 4, 2, 6, 2, 1, 7, 2, 0, 3, 3, 4, 4, 5, 1, 4, 4, 1, 8, 2, 5, 3, 4, 4, 3, 5, 1, 8, 0, 0, 1, 1, 5, 9, 6, 0, 4, 9, 7, 1, 4, 5, 9, 3, 5, 2, 6, 0, 4, 6, 0, 7, 9, 3, 4, 6, 4, 9, 7, 0, 9, 0, 5, 8
Offset: 1

Views

Author

Keywords

Examples

			1.879169271595835836455956409345071054399542621720334...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/7)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/7]],10,100][[1]]
  • PARI
    log(gamma(1/7))

A256610 Decimal expansion of log(Gamma(1/9)).

Original entry on oeis.org

2, 1, 4, 2, 7, 3, 1, 8, 0, 0, 3, 7, 6, 6, 9, 3, 1, 0, 4, 8, 8, 0, 4, 0, 7, 8, 8, 4, 8, 9, 6, 4, 5, 2, 6, 3, 8, 3, 8, 6, 5, 0, 9, 2, 9, 4, 1, 2, 1, 5, 1, 8, 0, 3, 2, 5, 2, 6, 2, 9, 3, 8, 2, 7, 5, 0, 5, 3, 3, 3, 7, 3, 2, 5, 4, 6, 2, 6, 3, 6, 9, 0, 8, 7, 3, 8, 1, 0, 7, 2, 7, 6, 4, 8, 0, 8, 7, 7, 7, 9, 0, 8, 5, 5
Offset: 1

Views

Author

Keywords

Examples

			2.142731800376693104880407884896452638386509294121518...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/9)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/9]],10,100][[1]]
  • PARI
    log(gamma(1/9))

A256611 Decimal expansion of log(Gamma(1/11)).

Original entry on oeis.org

2, 3, 5, 1, 9, 3, 4, 6, 1, 0, 7, 9, 8, 7, 9, 2, 7, 6, 0, 4, 6, 3, 6, 8, 0, 9, 5, 7, 6, 4, 9, 3, 8, 6, 9, 6, 3, 3, 6, 5, 6, 9, 3, 0, 1, 8, 6, 0, 2, 5, 8, 1, 2, 2, 1, 0, 7, 0, 2, 3, 1, 4, 0, 7, 9, 7, 8, 3, 8, 3, 5, 0, 0, 7, 7, 9, 1, 9, 6, 1, 7, 6, 7, 4, 7, 7, 7, 4, 8, 3, 0, 7, 4, 5, 2, 1, 0, 8, 8, 3, 6, 2, 8, 1
Offset: 1

Views

Author

Keywords

Examples

			2.351934610798792760463680957649386963365693018602581...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/11)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/11]],10,100][[1]]
  • PARI
    log(gamma(1/11))

A256612 Decimal expansion of log(Gamma(1/10)).

Original entry on oeis.org

2, 2, 5, 2, 7, 1, 2, 6, 5, 1, 7, 3, 4, 2, 0, 5, 9, 5, 9, 8, 6, 9, 7, 0, 1, 6, 4, 6, 3, 6, 8, 4, 9, 5, 1, 1, 8, 6, 1, 5, 6, 2, 7, 2, 2, 2, 2, 9, 4, 9, 5, 3, 7, 6, 5, 0, 4, 1, 7, 3, 9, 8, 3, 0, 0, 7, 8, 8, 7, 0, 2, 9, 8, 2, 8, 9, 4, 6, 1, 8, 7, 0, 2, 9, 8, 4, 0, 5, 4, 3, 2, 2, 7, 6, 3, 7, 7, 5, 1, 8, 9, 6, 5, 2
Offset: 1

Views

Author

Keywords

Examples

			2.252712651734205959869701646368495118615627222294953...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/10)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/10]],10,100][[1]]
  • PARI
    log(gamma(1/10))
Showing 1-10 of 17 results. Next