A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.
6, 12, 15, 18, 24, 35, 36, 45, 48, 54, 72, 75, 77, 96, 108, 135, 143, 144, 162, 175, 192, 216, 221, 225, 245, 288, 323, 324, 375, 384, 405, 432, 437, 486, 539, 576, 648, 667, 675, 768, 847, 864, 875, 899, 972, 1125, 1147, 1152, 1215, 1225, 1296, 1458, 1517, 1536, 1573, 1715, 1728, 1763, 1859, 1875, 1944
Offset: 1
Keywords
Examples
. n | a(n) n | a(n) . ----+------------------ ----+------------------ . 1 | 6 = 2 * 3 13 | 77 = 7 * 11 . 2 | 12 = 2^2 * 3 14 | 96 = 2^5 * 3 . 3 | 15 = 3 * 5 15 | 108 = 2^2 * 3^3 . 4 | 18 = 2 * 3^2 16 | 135 = 3^3 * 5 . 5 | 24 = 2^3 * 3 17 | 143 = 11 * 13 . 6 | 35 = 5 * 7 18 | 144 = 2^4 * 3^2 . 7 | 36 = 2^2 * 3^2 19 | 162 = 2 * 3^4 . 8 | 45 = 3^2 * 5 20 | 175 = 5^2 * 7 . 9 | 48 = 2^4 * 3 21 | 192 = 2^6 * 3 . 10 | 54 = 2 * 3^3 22 | 216 = 2^3 * 3^3 . 11 | 72 = 2^3 * 3^2 23 | 221 = 13 * 17 . 12 | 75 = 3 * 5^2 24 | 225 = 3^2 * 5^2 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a256617 n = a256617_list !! (n-1) a256617_list = f (singleton (6, 2, 3)) $ tail a000040_list where f s ps@(p : ps'@(p':_)) | m < p * p' = m : f (insert (m * q, q, q') (insert (m * q', q, q') s')) ps | otherwise = f (insert (p * p', p, p') s) ps' where ((m, q, q'), s') = deleteFindMin s
-
Mathematica
Select[Range[2000], MatchQ[FactorInteger[#], {{p_, }, {q, }} /; q == NextPrime[p]]&] (* _Jean-François Alcover, Dec 31 2017 *)
-
PARI
is(n) = if(omega(n)!=2, return(0), my(f=factor(n)[, 1]~); if(f[2]==nextprime(f[1]+1), return(1))); 0 \\ Felix Fröhlich, Dec 31 2017
-
PARI
list(lim)=my(v=List(),c=sqrtnint(lim\=1,3),d=nextprime(c+1),p=2); forprime(q=3,d, for(i=1,logint(lim\q,p), my(t=p^i); while((t*=q)<=lim, listput(v,t))); p=q); forprime(q=d+1,lim\precprime(sqrtint(lim)), listput(v,p*q); p=q); Set(v) \\ Charles R Greathouse IV, Apr 12 2020
-
Python
from sympy import primefactors, nextprime A256617_list = [] for n in range(1,10**5): plist = primefactors(n) if len(plist) == 2 and plist[1] == nextprime(plist[0]): A256617_list.append(n) # Chai Wah Wu, Aug 23 2021