cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.

Original entry on oeis.org

6, 12, 15, 18, 24, 35, 36, 45, 48, 54, 72, 75, 77, 96, 108, 135, 143, 144, 162, 175, 192, 216, 221, 225, 245, 288, 323, 324, 375, 384, 405, 432, 437, 486, 539, 576, 648, 667, 675, 768, 847, 864, 875, 899, 972, 1125, 1147, 1152, 1215, 1225, 1296, 1458, 1517, 1536, 1573, 1715, 1728, 1763, 1859, 1875, 1944
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2015

Keywords

Examples

			.   n | a(n)                      n | a(n)
. ----+------------------       ----+------------------
.   1 |   6 = 2 * 3              13 |  77 = 7 * 11
.   2 |  12 = 2^2 * 3            14 |  96 = 2^5 * 3
.   3 |  15 = 3 * 5              15 | 108 = 2^2 * 3^3
.   4 |  18 = 2 * 3^2            16 | 135 = 3^3 * 5
.   5 |  24 = 2^3 * 3            17 | 143 = 11 * 13
.   6 |  35 = 5 * 7              18 | 144 = 2^4 * 3^2
.   7 |  36 = 2^2 * 3^2          19 | 162 = 2 * 3^4
.   8 |  45 = 3^2 * 5            20 | 175 = 5^2 * 7
.   9 |  48 = 2^4 * 3            21 | 192 = 2^6 * 3
.  10 |  54 = 2 * 3^3            22 | 216 = 2^3 * 3^3
.  11 |  72 = 2^3 * 3^2          23 | 221 = 13 * 17
.  12 |  75 = 3 * 5^2            24 | 225 = 3^2 * 5^2 .
		

Crossrefs

Subsequence of A007774.
Subsequences: A006094, A033845, A033849, A033851.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a256617 n = a256617_list !! (n-1)
    a256617_list = f (singleton (6, 2, 3)) $ tail a000040_list where
       f s ps@(p : ps'@(p':_))
         | m < p * p' = m : f (insert (m * q, q, q')
                              (insert (m * q', q, q') s')) ps
         | otherwise  = f (insert (p * p', p, p') s) ps'
         where ((m, q, q'), s') = deleteFindMin s
    
  • Mathematica
    Select[Range[2000], MatchQ[FactorInteger[#], {{p_, }, {q, }} /; q == NextPrime[p]]&] (* _Jean-François Alcover, Dec 31 2017 *)
  • PARI
    is(n) = if(omega(n)!=2, return(0), my(f=factor(n)[, 1]~); if(f[2]==nextprime(f[1]+1), return(1))); 0 \\ Felix Fröhlich, Dec 31 2017
    
  • PARI
    list(lim)=my(v=List(),c=sqrtnint(lim\=1,3),d=nextprime(c+1),p=2); forprime(q=3,d, for(i=1,logint(lim\q,p), my(t=p^i); while((t*=q)<=lim, listput(v,t))); p=q); forprime(q=d+1,lim\precprime(sqrtint(lim)), listput(v,p*q); p=q); Set(v) \\ Charles R Greathouse IV, Apr 12 2020
    
  • Python
    from sympy import primefactors, nextprime
    A256617_list = []
    for n in range(1,10**5):
        plist = primefactors(n)
        if len(plist) == 2 and plist[1] == nextprime(plist[0]):
            A256617_list.append(n) # Chai Wah Wu, Aug 23 2021

Formula

A001222(a(n)) = 2.
A006530(a(n)) = A151800(A020639(n)) = A000040(A049084(A020639(a(n)))+1).
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/A083553(n) = Sum_{n>=1} 1/((prime(n)-1)*(prime(n+1)-1)) = 0.7126073495... - Amiram Eldar, Dec 23 2020