A256644 Numbers of alternating permutations where numbers at odd positions and even positions are monotone respectively.
1, 1, 1, 2, 5, 6, 9, 12, 21, 30, 58, 86, 176, 266, 563, 860, 1861, 2862, 6294, 9726, 21660, 33594, 75584, 117574, 266800, 416026, 950914, 1485802, 3417342, 5348882, 12369287, 19389692, 45052517, 70715342, 165002462, 259289582, 607283492, 955277402, 2244901892
Offset: 0
Keywords
Examples
a(5) = 6: (1,3,2,5,4), (1,4,2,5,3), (1,5,2,4,3), (3,4,2,5,1), (3,5,2,4,1), (4,5,2,3,1). a(6) = 9: (1,3,2,5,4,6), (1,4,2,5,3,6), (1,6,2,5,3,4), (3,4,2,5,1,6), (3,6,2,5,1,4), (4,6,2,5,1,3), (4,6,3,5,1,2), (5,6,2,4,1,3), (5,6,3,4,1,2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Ran Pan, Exercise Q, Project P
Programs
-
Magma
[1,1,1,2] cat [Catalan(Floor(n/2))+ Catalan(Floor((n-1)/2))+2: n in [4..40]]; // Vincenzo Librandi, Apr 08 2015
-
Maple
C:= n-> binomial(2*n, n)/(n+1): a:= n-> `if`(n<4, [1$3, 2][n+1], C(iquo(n, 2))+C(iquo(n-1, 2))+2): seq(a(n), n=0..40); # Alois P. Heinz, Apr 08 2015
-
Mathematica
Table[Which[n < 3, 1, n == 3, 2, True, CatalanNumber[Floor[n/2]] + CatalanNumber[Floor[(n - 1)/2]] + 2], {n, 0, 38}] (* Michael De Vlieger, Apr 07 2015 *)
-
PARI
C(n) = binomial(2*n, n)/(n+1); a(n) = if (n<3, 1, if (n==3, 2, C(n\2)+ C((n-1)\2)+2)); \\ Michel Marcus, Apr 07 2015
-
PARI
a(n) = if (n<4, return(max(1,n-1))); binomial(n\2*2, n\2)/(n\2+1)*if(n%2, 2, (5*n-2)/(4*n-4)) + 2 \\ Charles R Greathouse IV, Apr 07 2015
Formula
For n>3, a(n) = C(floor(n/2))+ C(floor((n-1)/2))+2, where C(n) is the n-th Catalan number, with a(0)=a(1)=a(2)=1 and a(3)=2.