A259025
Numbers k such that k is the average of four consecutive primes k-11, k-1, k+1 and k+11.
Original entry on oeis.org
420, 1050, 2028, 2730, 3582, 4230, 4242, 4272, 4338, 6090, 6132, 6690, 6792, 8220, 11058, 11160, 11970, 12252, 15288, 19542, 19698, 21588, 21600, 26892, 27540, 28098, 28308, 29400, 30840, 30870, 31080, 32412, 42072, 45318, 47808, 48120
Offset: 1
For n=420: 409, 419, 421, 431 are consecutive primes (n-11=409, n-1=419, n+1=421, n+11=431).
For n=1050: 1039, 1049, 1051, 1061 are consecutive primes (n-11=1039, n-1=1049, n+1=1051, n+11=1061).
-
{p, q, r, s} = {2, 3, 5, 7}; lst = {}; While[p < 50000, If[ Differences[{p, q, r, s}] == {10, 2, 10}, AppendTo[lst, q + 1]]; {p, q, r, s} = {q, r, s, NextPrime@ s}]; lst (* Robert G. Wilson v, Jul 15 2015 *)
Mean/@Select[Partition[Prime[Range[5000]],4,1],Differences[#]=={10,2,10}&] (* Harvey P. Dale, Sep 11 2019 *)
-
is(n)=n%6==0&&isprime(n-11)&&isprime(n-1)&&isprime(n+1)&&isprime(n+11)&&!isprime(n-7)&&!isprime(n-5)&&!isprime(n+5)&&!isprime(n+7) \\ Charles R Greathouse IV, Jul 17 2015
-
from sympy import isprime,prevprime,nextprime
for i in range(0,50001,2):
if isprime(i-1) and isprime(i+1):
if prevprime(i-1) == i-11 and nextprime(i+1) == i+11 : print (i,end=', ')
A257638
Numbers n such that n-25, n-1, n+1 and n+25 are consecutive primes.
Original entry on oeis.org
232962, 311712, 431832, 435948, 473352, 501342, 525492, 596118, 635388, 665922, 699792, 754182, 842448, 1013502, 1017648, 1036002, 1156848, 1255452, 1284738, 1306692, 1479912, 1516128, 1551732, 1560708, 1595928, 1659348, 1690572, 1745112
Offset: 1
232962 is the average of the four consecutive primes 232937, 232961, 232963, 232987.
311712 is the average of the four consecutive primes 311687, 311711, 311713, 311737.
-
from sympy import isprime,prevprime,nextprime
for i in range(0,1000001,6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-25 and nextprime(i+1) == i+25: print (i,end=', ')
A258088
Numbers n such that n is the average of four consecutive primes n-5, n-1, n+1 and n+5.
Original entry on oeis.org
12, 18, 42, 102, 108, 228, 312, 462, 858, 882, 1092, 1302, 1428, 1488, 1872, 1998, 2688, 3462, 4518, 4788, 5232, 5652, 6828, 7878, 8292, 10458, 13692, 13878, 15732, 16062, 16068, 16188, 17388, 19422, 19428, 20748, 21018, 21318, 22278, 23058
Offset: 1
12 is the average of the four consecutive primes 7, 11, 13, 17.
18 is the average of the four consecutive primes 13, 17, 19, 23.
-
a={};Do[If[Prime[x + 3] - Prime[x]==10, AppendTo[a, Prime[x]+ 5]], {x, 1, 4000}]; a (* Vincenzo Librandi, Jul 18 2015 *)
Mean/@Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&] (* Harvey P. Dale, Sep 18 2018 *)
-
is(n)=isprime(n-5)&&isprime(n-1)&&isprime(n+1)&&isprime(n+5) \\ Charles R Greathouse IV, Aug 28 2015
-
from sympy import isprime,prevprime,nextprime
for i in range(0,50001,2):
if isprime(i-1) and isprime(i+1):
if prevprime(i-1) == i-5 and nextprime(i+1) == i+5: print (i,end=', ')
A258879
Numbers k such that k is the average of four consecutive primes k-7, k-1, k+1 and k+7.
Original entry on oeis.org
30, 60, 270, 570, 600, 1230, 1290, 1620, 2340, 2550, 3540, 4020, 4650, 5850, 6270, 6360, 6570, 10860, 11490, 14550, 15270, 17490, 19080, 19380, 19470, 23670, 26730, 29130, 32370, 34260, 41610, 48480, 49200, 49530, 51420, 51480
Offset: 1
For k=30: 23, 29, 31, 37 are consecutive primes (k-7=23, k-1=29, k+1=31, k+7=37).
For k=60: 53, 59, 61, 67 are consecutive primes (k-7=53, k-1=59, k+1=61, k+7=67).
-
[n: n in [13..2*10^5] | IsPrime(n-7) and IsPrime(n-1) and IsPrime(n+1) and IsPrime(n+7)]; // Vincenzo Librandi Jul 16 2015
-
Select[ 5 Range@ 11000, PrimeQ[# - 7] && PrimeQ[# - 1] && PrimeQ[# + 1] && PrimeQ[# + 7] &] (* Robert G. Wilson v, Jun 28 2015 *)
-
main(size)={my(v=vector(size),i,t=8);for(i=1,size,while(1,if(isprime(t-7)&&isprime(t-1)&&isprime(t+1)&&isprime(t+7),v[i]=t;break,t++));t++);return(v);} /* Anders Hellström, Jul 17 2015 */
-
from sympy import isprime, prevprime, nextprime
for i in range(0, 10001, 2):
if isprime(i-1) and isprime(i+1):
if prevprime(i-1) == i-7 and nextprime(i+1) == i+7: print(i, end=', ')
A260959
Numbers n such that n is the average of four consecutive primes n-13, n-1, n+1 and n+13.
Original entry on oeis.org
7950, 10500, 32970, 33330, 34470, 36900, 43050, 66360, 71550, 74610, 87120, 89070, 92400, 94560, 95190, 102000, 104310, 121950, 125790, 133980, 148470, 156900, 160710, 168630, 174930, 182640, 194070, 204600, 206250, 230340, 244380, 246510
Offset: 1
7950 is the average of the four consecutive primes 7937, 7949, 7951, 7963.
10500 is the average of the four consecutive primes 10487, 10499, 10501, 10513.
A262176
Numbers k such that k-17, k-1, k+1 and k+17 are consecutive primes.
Original entry on oeis.org
3390, 66570, 70140, 84810, 132330, 136710, 222840, 225750, 242730, 271770, 288930, 320010, 330330, 377370, 390390, 414330, 463890, 489960, 505710, 644670, 758340, 819390, 830310, 857010, 895650, 906540, 908910, 924810, 952380, 968520, 974820
Offset: 1
3390 is the average of the four consecutive primes 3373, 3389, 3391, 3407.
66570 is the average of the four consecutive primes 66553, 66569, 66571, 66587.
-
Select[Prime@ Range@ 50000, NextPrime[#, {1, 2, 3}] == {16, 18, 34} + # &] + 17 (* Giovanni Resta, Sep 14 2015 *)
-
list(l)=for(i=1,l,my(p=prime(i)); if(p+16==prime(i+1) && p+18==prime(i+2) && p+34==prime(i+3), print1(p+17,", "))) \\ Anders Hellström, Sep 14 2015
-
use ntheory ":all"; say $+1 for grep { next_prime($+2)-$ == 18 && $-prev_prime($) == 16} @{twin_primes(1e9)}; # _Dana Jacobsen, Oct 13 2015
-
use ntheory ":all"; say $+17 for grep { next_prime($+0)-$ == 16 && next_prime($+18)-$ == 34} sieve_prime_cluster(1,1e9,16,18,34); # _Dana Jacobsen, Oct 13 2015
-
from sympy import isprime,prevprime,nextprime
for i in range(0,3000001,6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1)==i-17 and nextprime(i+1)==i+17 : print (i,end=', ')
A262668
Numbers n such that n-19, n-1, n+1 and n+19 are consecutive primes.
Original entry on oeis.org
20982, 28182, 51768, 57222, 76422, 87720, 90678, 104850, 108108, 110730, 141180, 199602, 227112, 248118, 264600, 268842, 304392, 304458, 320082, 322920, 330018, 382728, 401670, 414432, 429972, 450258, 467082, 489408, 520548, 535608, 540120
Offset: 1
20982 is the average of the four consecutive primes 20963, 20981, 20983, 21001.
28182 is the average of the four consecutive primes 28163, 28181, 28183, 28201.
-
Select[Range[6, 600000, 6], And[AllTrue[{# - 1, # + 1}, PrimeQ], NextPrime[# - 1, -1] == # - 19, NextPrime[# + 1] == # + 19] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
Select[Prime@Range@60000, NextPrime[#, {1, 2, 3}] == {18, 20, 38} + # &] + 19 (* Vincenzo Librandi, Oct 10 2015 *)
Mean/@Select[Partition[Prime[Range[50000]],4,1],Differences[#]=={18,2,18}&] (* Harvey P. Dale, Jan 16 2019 *)
-
from sympy import isprime,prevprime,nextprime
for i in range(0,1000001,6):
if isprime(i-1) and isprime(i+1):
if prevprime(i-1) == i-19 and nextprime(i+1) == i+19 : print(i,end=', ')
A263298
Numbers n such that n-23, n-1, n+1 and n+23 are consecutive primes.
Original entry on oeis.org
19890, 43890, 157770, 400680, 436650, 609780, 681090, 797310, 924360, 978180, 1093200, 1116570, 1179150, 1185930, 1313700, 1573110, 1663350, 2001510, 2110290, 2163570, 2336310, 2372370, 2408280, 2415630, 2562690, 2877840, 2896740, 2961900
Offset: 1
19890 is the average of the four consecutive primes 19867, 19889, 19891, 19913.
43890 is the average of the four consecutive primes 43867, 43889, 43891, 43913.
-
{p, q, r, s} = {2, 3, 5, 7};lst={}; While[p<5000000, If[Differences[{p, q, r, s}]=={22, 2, 22}, AppendTo[lst, q + 1]]; {p, q, r, s}={q, r, s,NextPrime@s}]; lst (* Vincenzo Librandi, Oct 14 2015 *)
-
isok(n) = isprime(n-1) && isprime(n+1) && (precprime(n-2) == n-23) && (nextprime(n+2) == n+23); \\ Michel Marcus, Oct 14 2015
-
from sympy import isprime,prevprime,nextprime
for i in range(0,5000001,6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-23 and nextprime(i+1) == i+23: print (i,end=', ')
A265651
Numbers n such that n-29, n-1, n+1 and n+29 are consecutive primes.
Original entry on oeis.org
14592, 84348, 151938, 208962, 241392, 254490, 397182, 420192, 494442, 527700, 549978, 581982, 637200, 641550, 712602, 729330, 791628, 850302, 975552, 995052, 1086558, 1107852, 1157670, 1245450, 1260798, 1286148, 1494510, 1555290, 1608912
Offset: 1
14592 is the average of the four consecutive primes 14563, 14591, 14593, 14621.
84348 is the average of the four consecutive primes 84319, 84347, 84349, 84377.
-
Select[Prime@Range@100000, NextPrime[#, {1, 2, 3}] == {28, 30, 58} + # &] + 29 (* Vincenzo Librandi, Dec 12 2015 *)
Mean/@Select[Partition[Prime[Range[125000]],4,1],Differences[#]=={28,2,28}&] (* Harvey P. Dale, May 02 2016 *)
-
from sympy import isprime,prevprime,nextprime
for i in range(0,1000001,6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-29 and nextprime(i+1) == i+29 : print (i,end=', ')
A268305
Numbers k such that k - 37, k - 1, k + 1, k + 37 are consecutive primes.
Original entry on oeis.org
1524180, 3264930, 3970530, 5438310, 5642910, 6764940, 8176410, 10040880, 10413900, 10894320, 11639520, 12352980, 13556340, 15900720, 16897590, 17283360, 18168150, 18209100, 18686910, 19340220, 20099940, 20359020, 20483340, 21028290, 21846360
Offset: 1
1524180 is the average of the four consecutive primes 1524143, 1524179, 1524181, 1524217.
3264930 is the average of the four consecutive primes 3264893, 3264929, 3264931, 3264967.
-
Select[Partition[Prime[Range[14*10^5]],4,1],Differences[#]=={36,2,36}&][[All,2]]+1 (* Harvey P. Dale, Mar 12 2018 *)
-
from sympy import isprime,prevprime,nextprime
for i in range(0,30000001,6):
if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-37 and nextprime(i+1) == i+37 : print (i,end=', ')
Showing 1-10 of 17 results.
Comments