A257009 Number of finite sequences of positive integers with alternant equal to n.
4, 8, 9, 17, 14, 25, 22, 36, 25, 49, 31, 55, 49, 69, 41, 83, 52, 100, 66, 100, 66, 126, 84, 132, 88, 125, 95, 198, 82, 159, 119, 190, 125, 211, 125, 194, 135, 275, 128, 250, 152, 232, 191, 238, 174, 348, 150, 330, 223, 279, 158, 356, 220, 374, 217, 360, 196, 438
Offset: 3
Keywords
References
- D. B. Zagier, Zetafunktionen und quadratische Korper, Springer, 1981.
Links
- B. R. Smith, Reducing quadratic forms by kneading sequences J. Int. Seq., 17 (2014) 14.11.8.
Formula
a(n) equals the number of pairs (h,k) with |k| < sqrt(D), k^2 congruent to D (mod 4), h > (sqrt(D) - k)/2, h exactly dividing (D-k^2)/4, where D = n^2-4 or n^2+4.
Comments