A257814 Numbers n such that k times the sum of the digits (d) to the power k equal n, so n=k*sum(d^k), for some positive integer k, where k is smaller than sum(d^k).
2, 3, 4, 5, 6, 7, 8, 9, 50, 298, 130004, 484950, 3242940, 4264064, 5560625, 36550290, 47746195, 111971979, 129833998, 9865843497, 46793077740, 767609367921, 4432743262896, 42744572298532, 77186414790914, 99320211963544, 99335229415136, 456385296642870
Offset: 1
Examples
50 = 2*(5^2+0^2); 484950 = 5*(4^5+8^5+4^5+9^5+5^5+0^5).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..54 (terms < 10^32, n = 1..53 from Giovanni Resta)
Programs
-
PARI
sdk(d, k) = sum(j=1, #d, d[j]^k); isok(n) = {d = digits(n); k = 1; while ((val=k*sdk(d,k)) != n, k++; if (val > n, return (0))); k < sdk(d,k);} \\ Michel Marcus, May 30 2015
-
Python
def mod(n,a): kk = 0 while n > 0: kk= kk+(n%10)**a n =int(n//10) return kk for a in range (1, 10): for c in range (1, 10**7): if c==a*mod(c,a) and a
Extensions
a(16)-a(28) from Giovanni Resta, May 10 2015
Comments