cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258087 Start with all terms set to 0. Then add n to the next n+2 terms for n=0,1,2,... .

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 14, 18, 25, 30, 39, 45, 56, 63, 76, 84, 99, 108, 125, 135, 154, 165, 186, 198, 221, 234, 259, 273, 300, 315, 344, 360, 391, 408, 441, 459, 494, 513, 550, 570, 609, 630, 671, 693, 736, 759, 804, 828, 875, 900, 949, 975, 1026, 1053, 1106, 1134
Offset: 0

Views

Author

Wesley Ivan Hurt, May 19 2015

Keywords

Examples

			n  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, ...
__________________________________________
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
+       0, 0
+          1, 1, 1
+             2, 2, 2, 2
+                3, 3, 3, 3, 3
+                   4, 4, 4, 4, 4, 4
+                      5, 5, 5, 5, 5, 5, 5
+                         6, 6, 6, 6, 6, 6, 6, 6
+                            7, 7, 7, 7, 7, 7, 7, 7, 7, 7
+                               8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
+                                  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
+                                      ...
__________________________________________
a(n)|0, 0, 1, 3, 6, 9,14,18,25,30,39,  ...
		

Crossrefs

Cf. A272058.

Programs

  • Haskell
    a258087 n = a258087_list !! n
    a258087_list = f 0 [0] $
       map (\i -> take (i + 1) (repeat 0) ++ replicate (i + 2) i) [0..] where
       f i ys@(y:_) (xs:xss) = (ys !! i) :
                               f (i + 1) (zipWith (+) (ys ++ repeat 0) xs) xss
    -- Reinhard Zumkeller, May 21 2015
    
  • Magma
    [(6*n^2+2*n-11+(2*n-5)*(-1)^n)/16+0^n: n in [0..60]]; // Vincenzo Librandi, May 20 2015
    
  • Maple
    A258087:=n->(6*n^2+2*n-11+(2*n-5)*(-1)^n)/16+0^n: seq(A258087(n), n=0..100);
  • Mathematica
    Join[{0}, Table[(6 n^2 + 2 n - 11 + (2 n - 5) (-1)^n)/16, {n, 100}]]
    Table[Total@ Range[Floor[(n - 1)/2], n - 1], {n, 55}] (* Michael De Vlieger, Apr 11 2016 *)
  • PARI
    a(n) = if (n==0, 0, sum(k = (n-1)\2, n-1, k)); \\ Michel Marcus, Apr 11 2016
    
  • PARI
    x='x+O('x^99); concat([0, 0], Vec(x^2*(x^3-x^2-2*x-1)/((x+1)^2*(x-1)^3))) \\ Altug Alkan, Apr 11 2016
  • Sage
    [(6*n^2+2*n-11+(2*n-5)*(-1)^n)/16+0^n for n in (0..60)] # Bruno Berselli, May 20 2015
    

Formula

a(n) = (6*n^2+2*n-11+(2*n-5)*(-1)^n)/16+0^n.
a(n) = Sum_{i=1..n-1} (3*i+2)/4+(2-i)*(-1)^i/4.
From Robert Israel, May 19 2015: (Start)
G.f.: x^2*(x^3-x^2-2*x-1)/((x+1)^2*(x-1)^3).
E.g.f.: 1 + exp(x)*(6*x^2+8*x-11)/16 - exp(-x)*(2*x+5)/16.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n >= 6. (End)
From Bruno Berselli, May 20 2015: (Start)
a(n) = a(-n) for n odd, a(n) = a(-n)+n/2 otherwise.
a(n) = (floor(n/2)+1)*(floor(n/2)+2*floor((n-1)/2))/2 for n>0. Therefore, after 3, all terms of the sequence are composite. (End)
a(n) = Sum_{i=floor((n-1)/2)..n-1} i, for n>0. - Wesley Ivan Hurt, Apr 11 2016