A258109 Number of balanced parenthesis expressions of length 2n and depth 3.
1, 5, 18, 57, 169, 482, 1341, 3669, 9922, 26609, 70929, 188226, 497845, 1313501, 3459042, 9096393, 23895673, 62721698, 164531565, 431397285, 1130708866, 2962826465, 7761964833, 20331456642, 53249182309, 139449644717, 365166860706, 956185155129, 2503657040137
Offset: 3
Examples
For n=4, the a(4) = 5 solutions are /\ /\ / \ \ LRLLLRRR /\/ \ \ ................................ /\ | /\/ \ / \ LLRLLRRR / \ \ ................................ /\/\ | / \ | LLLRLRRR / \ / \ ................................ /\ | / \/\ / \ LLLRRLRR / \ / ................................ /\ /\ / \ / LLLRRRLR / \/\ /
References
- S. S. Skiena and M. A. Revilla, Programming Challenges: The Programming Contest Training Manual, Springer, 2006, page 140.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000 (first 40 terms from Gheorghe Coserea)
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,2).
Programs
-
C
typedef long long unsigned Integer; Integer a(int n) { int i; Integer pow2 = 1, a[3] = {0}; for (i = 3; i <= n; ++i) { a[ i%3 ] = pow2 + 3 * a[ (i-1)%3 ] - a[ (i-2)%3 ]; pow2 = pow2 * 2; } return a[ (i-1)%3 ]; }
-
Magma
I:=[1,5,18,57,169]; [n le 5 select I[n] else 5*Self(n-1) - 7*Self(n-2) + 2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2015
-
Maple
a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1, 2^(n-3) +3*a(n-1) -a(n-2))) end: seq(a(n), n=3..30); # Alois P. Heinz, May 20 2015
-
Mathematica
Join[{1, 5}, LinearRecurrence[{5, -7, 2}, {18, 57, 169}, 30]] (* Vincenzo Librandi, Sep 26 2015 *)
-
PARI
Vec(-x^3/((2*x-1)*(x^2-3*x+1)) + O(x^100)) \\ Colin Barker, May 24 2015
-
PARI
a(n) = fibonacci(2*n-1) - 2^(n-1) \\ Gheorghe Coserea, Feb 04 2016
Formula
a(n) = 2^(n-3) + 3 * a(n-1) - a(n-2).
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>5. - Colin Barker, May 24 2015
G.f.: -x^3 / ((2*x-1)*(x^2-3*x+1)). - Colin Barker, May 24 2015
a(n) = 2^(-1-n)*(-5*4^n - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))) / 5. - Colin Barker, Jun 05 2017
a(n) = Sum_{i=1..n-1} A061667(i)*(n-1-i) - Tim C. Flowers, May 16 2018
Comments