cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258109 Number of balanced parenthesis expressions of length 2n and depth 3.

Original entry on oeis.org

1, 5, 18, 57, 169, 482, 1341, 3669, 9922, 26609, 70929, 188226, 497845, 1313501, 3459042, 9096393, 23895673, 62721698, 164531565, 431397285, 1130708866, 2962826465, 7761964833, 20331456642, 53249182309, 139449644717, 365166860706, 956185155129, 2503657040137
Offset: 3

Views

Author

Gheorghe Coserea, May 20 2015

Keywords

Comments

a(n) is the number of Dyck paths of length 2n and height 3. For example, a(3) = 1 because there is only one such Dyck path which is UUUDDD. - Ran Pan, Sep 26 2015
a(n) is the number of rooted plane trees with n+1 nodes and height 3 (see example for correspondence). - Gheorghe Coserea, Feb 04 2016

Examples

			For n=4, the a(4) = 5 solutions are
                /\       /\
               /  \        \
LRLLLRRR    /\/    \        \
................................
                /\        |
             /\/  \      / \
LLRLLRRR    /      \        \
................................
              /\/\        |
             /    \       |
LLLRLRRR    /      \     / \
................................
              /\          |
             /  \/\      / \
LLLRRLRR    /      \    /
................................
              /\          /\
             /  \        /
LLLRRRLR    /    \/\    /
		

References

  • S. S. Skiena and M. A. Revilla, Programming Challenges: The Programming Contest Training Manual, Springer, 2006, page 140.

Crossrefs

Column k=3 of A080936.
Column k=2 of A287213.

Programs

  • C
    typedef long long unsigned Integer;
    Integer a(int n)
    {
        int i;
        Integer pow2 = 1, a[3] = {0};
        for (i = 3; i <= n; ++i) {
            a[ i%3 ] = pow2 + 3 * a[ (i-1)%3 ] - a[ (i-2)%3 ];
            pow2 = pow2 * 2;
        }
        return a[ (i-1)%3 ];
    }
    
  • Magma
    I:=[1,5,18,57,169]; [n le 5 select I[n] else 5*Self(n-1) - 7*Self(n-2) + 2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2015
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, 0,
          `if`(n=3, 1, 2^(n-3) +3*a(n-1) -a(n-2)))
        end:
    seq(a(n), n=3..30);  # Alois P. Heinz, May 20 2015
  • Mathematica
    Join[{1, 5}, LinearRecurrence[{5, -7, 2}, {18, 57, 169}, 30]] (* Vincenzo Librandi, Sep 26 2015 *)
  • PARI
    Vec(-x^3/((2*x-1)*(x^2-3*x+1)) + O(x^100)) \\ Colin Barker, May 24 2015
    
  • PARI
    a(n) = fibonacci(2*n-1) - 2^(n-1)  \\ Gheorghe Coserea, Feb 04 2016

Formula

a(n) = 2^(n-3) + 3 * a(n-1) - a(n-2).
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>5. - Colin Barker, May 24 2015
G.f.: -x^3 / ((2*x-1)*(x^2-3*x+1)). - Colin Barker, May 24 2015
a(n) = A000045(2n-1) - A000079(n-1). - Gheorghe Coserea, Feb 04 2016
a(n) = 2^(-1-n)*(-5*4^n - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))) / 5. - Colin Barker, Jun 05 2017
a(n) = Sum_{i=1..n-1} A061667(i)*(n-1-i) - Tim C. Flowers, May 16 2018