A286816 Smallest b such that the k consecutive primes starting with prime(n) are all base-b Wieferich primes, i.e., satisfy b^(p-1) == 1 (mod p^2). Square array A(n, k), read by antidiagonals downwards.
5, 17, 8, 449, 26, 7, 557, 226, 18, 18, 19601, 1207, 1207, 148, 3, 132857, 54568, 1451, 606, 239, 19, 4486949, 2006776, 13543, 13543, 3469, 249, 38, 126664001, 20950343, 296449, 296449, 24675, 653, 423, 28, 2363321449, 230695118, 23250274, 17134811, 3414284, 39016, 5649, 28, 28, 5229752849, 5229752849, 882345432, 741652533, 36763941, 14380864, 217682, 26645, 63, 14
Offset: 1
Examples
The sequence of base-226 Wieferich primes starts 3, 5, 7, 97, 157, ... Since 226 is the smallest b such that the three consecutive primes starting with prime(2) = 3 are base-b Wieferich primes, A(2, 3) = 226. Array starts: n=1: 5, 17, 449, 557, 19601, 132857 n=2: 8, 26, 226, 1207, 54568, 2006776 n=3: 7, 18, 1207, 1451, 13543, 296449 n=4: 18, 148, 606, 13543, 296449, 17134811 n=5: 3, 239, 3469, 24675, 3414284, 36763941 n=6: 19, 249, 653, 39016, 14380864, 34998229
Crossrefs
Programs
-
PARI
primevec(initialp, vecsize) = my(v=[initialp]); while(#v < vecsize, v=concat(v, nextprime(v[#v]+1))); v a(n, k) = my(v=primevec(prime(n), k), b=2, i=0); while(1, for(x=1, #v, if(Mod(b, v[x]^2)^(v[x]-1)!=1, i++; break)); if(i==0, return(b)); b++; i=0) array(rows, cols) = for(s=1, rows, for(t=1, cols, print1(a(s, t), ", ")); print("")) array(5, 6) \\ print 5 X 6 array
Extensions
More terms from Max Alekseyev, Oct 10 2023
Comments