A259200 Number of partitions of n into nine primes.
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 7, 9, 10, 11, 12, 16, 16, 20, 21, 24, 26, 33, 31, 39, 39, 47, 46, 59, 53, 69, 65, 80, 77, 98, 85, 114, 104, 131, 118, 154, 133, 179, 155, 200, 177, 236, 196, 268, 227, 300, 256
Offset: 18
Examples
a(23) = 3 because there are 3 partitions of 23 into nine primes: [2,2,2,2,2,2,2,2,7], [2,2,2,2,2,2,3,3,5] and [2,2,2,2,3,3,3,3,3].
Links
Crossrefs
Programs
-
Magma
[#RestrictedPartitions(k,9,Set(PrimesUpTo(1000))):k in [18..70]] ; // Marius A. Burtea, Jul 13 2019
-
Maple
N:= 100: # to get a(0) to a(N) Primes:= select(isprime,[$1..N]): np:= nops(Primes): for j from 0 to np do g[0,j]:= 1 od: for n from 1 to 9 do g[n,0]:= 0: for j from 1 to np do g[n,j]:= convert(series(add(g[k,j-1] *x^((n-k)*Primes[j]),k=0..n),x,N+1),polynom) od od: seq(coeff(g[9,np],x,i),i=18..N) # Robert Israel, Jun 21 2015
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]==9&&AllTrue[ #, PrimeQ]&]], {n,18,70}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 31 2016 *)
-
PARI
a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [9,9]); nb;} \\ Michel Marcus, Jun 21 2015
Formula
a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q), where c = A010051. - Wesley Ivan Hurt, Jul 13 2019