cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259251 a(n) = 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6.

Original entry on oeis.org

7, 1093, 5461, 137257, 55987, 3257437, 299593, 12204241, 5229043, 36012943, 3257437, 499738093, 8108731, 199411801, 199411801, 917087137, 36012943, 3611342281, 67368421, 5622910567, 1108378657, 2238976117, 199411801, 47446779661, 917087137, 5622910567
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259252 (indices of primes in this sequence), A259253 (corresponding primes).

Programs

  • Magma
    [1 + SumOfDivisors(n) + SumOfDivisors(n)^2 + SumOfDivisors(n)^3 + SumOfDivisors(n)^4 + SumOfDivisors(n)^5 + SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
  • Maple
    with(numtheory): A259251:=n->1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6: seq(A259251(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4 + DivisorSigma[1, n]^5 + DivisorSigma[1, n]^6, {n, 10000}]
    Table[Cyclotomic[7, DivisorSigma[1, n]], {n, 10000}]
    f[n_] := Total[DivisorSigma[1, n]^Range[0, 6]]; Array[f, 26] (* Robert G. Wilson v *)
  • PARI
    vector(30, n, polcyclo(7, sigma(n))) \\ Michel Marcus, Jun 23 2015
    

Formula

a(n) = 1 + A000203(n) + A000203(n)^2 + A000203(n)^3 + A000203(n)^4 + A000203(n)^5 + A000203(n)^6.
a(n) = A053716(A000203(n)). - Michel Marcus, Jun 23 2015

A259253 Primes of the form: 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6.

Original entry on oeis.org

7, 1093, 55987, 5229043, 8108731, 917087137, 47446779661, 917087137, 4201025641, 31401724537, 141276239497, 3092313043, 47446779661, 31401724537, 141276239497, 654022685443, 141276239497, 141276239497, 265462278481, 47446779661, 100343116693, 4033516174507
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259251.

Crossrefs

Programs

  • Maple
    with(numtheory): A259253:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4+sigma(n)^5+sigma(n)^6), 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6, NULL): seq(A259253(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4 + DivisorSigma[1, n]^5 + DivisorSigma[1, n]^6, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[7, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
    Select[Table[Total[DivisorSigma[1,n]^Range[0,6]],{n,80}],PrimeQ] (* Harvey P. Dale, Oct 09 2020 *)

Formula

a(n) = A259251(A259252(n)).
Showing 1-2 of 2 results.