cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259252 Numbers n such that 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6 is prime.

Original entry on oeis.org

1, 2, 5, 9, 13, 16, 24, 25, 27, 28, 30, 37, 38, 39, 46, 50, 51, 55, 57, 59, 67, 68, 71, 79, 80, 82, 88, 93, 99, 105, 108, 118, 122, 125, 127, 133, 141, 145, 148, 152, 155, 157, 161, 162, 164, 179, 189, 191, 194, 196, 215, 228, 232, 237, 242, 247, 263, 281
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4 + DivisorSigma(1, n)^5+ DivisorSigma(1, n)^6)]; // Vincenzo Librandi, Jun 24 2015
  • Maple
    with(numtheory): A259252:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6), n, NULL): seq(A259252(n), n=1..500); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2 + DivisorSigma[1, #]^3 + DivisorSigma[1, #]^4 + DivisorSigma[1, #]^5 + DivisorSigma[1, #]^6] &]
    Select[Range[10000], PrimeQ[ Cyclotomic[7, DivisorSigma[1, #]]] &]
  • PARI
    isok(n) = isprime(polcyclo(7, sigma(n))); \\ Michel Marcus, Jun 23 2015
    

A259253 Primes of the form: 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6.

Original entry on oeis.org

7, 1093, 55987, 5229043, 8108731, 917087137, 47446779661, 917087137, 4201025641, 31401724537, 141276239497, 3092313043, 47446779661, 31401724537, 141276239497, 654022685443, 141276239497, 141276239497, 265462278481, 47446779661, 100343116693, 4033516174507
Offset: 1

Views

Author

Robert Price, Jun 22 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259251.

Crossrefs

Programs

  • Maple
    with(numtheory): A259253:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4+sigma(n)^5+sigma(n)^6), 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6, NULL): seq(A259253(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4 + DivisorSigma[1, n]^5 + DivisorSigma[1, n]^6, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[7, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
    Select[Table[Total[DivisorSigma[1,n]^Range[0,6]],{n,80}],PrimeQ] (* Harvey P. Dale, Oct 09 2020 *)

Formula

a(n) = A259251(A259252(n)).
Showing 1-2 of 2 results.