cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000276 Associated Stirling numbers.

Original entry on oeis.org

3, 20, 130, 924, 7308, 64224, 623376, 6636960, 76998240, 967524480, 13096736640, 190060335360, 2944310342400, 48503818137600, 846795372595200, 15618926924697600, 303517672703078400, 6198400928176128000, 132720966600284160000, 2973385109386137600000
Offset: 4

Views

Author

Keywords

Comments

a(n) is also the number of permutations of n elements, without any fixed point, with exactly two cycles. - Shanzhen Gao, Sep 15 2010

Examples

			a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - _Geoffrey Critzer_, Nov 03 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation).

Crossrefs

A diagonal of triangle in A008306.

Programs

  • Mathematica
    nn=25;a=Log[1/(1-x)]-x;Drop[Range[0,nn]!CoefficientList[Series[a^2/2,{x,0,nn}],x],4]  (* Geoffrey Critzer, Nov 03 2012 *)
    a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* Jean-François Alcover, Feb 06 2016, after Gary Detlefs *)
  • PARI
    a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (n-1)!*Sum_{i=2..n-2} 1/i = (n-1)!*(Psi(n-1)+gamma-1). - Vladeta Jovovic, Aug 19 2003
With alternating signs: Ramanujan polynomials psi_3(n-2, x) evaluated at 1. - Ralf Stephan, Apr 16 2004
E.g.f.: ((x+log(1-x))^2)/2. [Corrected by Vladeta Jovovic, May 03 2008]
a(n) = Sum_{i=2..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 15 2010
a(n) = (n+3)!*(h(n+2)-1), with offset 0, where h(n)=sum(1/k,k=1..n). - Gary Detlefs, Sep 11 2010
Conjecture: (-n+2)*a(n) +(n-1)*(2*n-5)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Jul 18 2015
Conjecture: a(n) +2*(-n+2)*a(n-1) +(n^2-6*n+10)*a(n-2) +(n-3)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 18 2015
a(n) = A000254(n-1) - (n-1)! - (n-2)!. - Anton Zakharov, Sep 24 2016

Extensions

More terms from Christian G. Bower

A269940 Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 27 2016

Keywords

Comments

We propose to call this sequence the 'Ward cycle numbers' and sequence A269939 the 'Ward set numbers'. - Peter Luschny, Nov 25 2022

Examples

			Triangle T(n,k) starts:
  [1]
  [0,   1]
  [0,   2,      3]
  [0,   6,     20,     15]
  [0,  24,    130,    210,    105]
  [0,  120,   924,   2380,   2520,    945]
  [0,  720,  7308,  26432,  44100,  34650,  10395]
  [0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
		

Crossrefs

Variants: A111999, A259456.
Cf. A269939 (Stirling2 counterpart), A268438, A032188 (row sums).

Programs

  • Maple
    T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k):
    seq(print(seq(T(n, k), k=0..n)), n=0..6);
    # Alternatively:
    T := proc(n, k) option remember;
        `if`(k=0, k^n,
        `if`(k<=0 or k>n, 0,
        (n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
    for n from 0 to 6 do seq(T(n, k), k=0..n) od;
  • Mathematica
    T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
  • Sage
    T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
    for n in (0..7): print([T(n, k) for k in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))

Formula

T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](n/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268438(n,k)*FF(n+k,n)/(2*n)!.

Extensions

Name corrected after notice from Ed Veling by Peter Luschny, Jun 14 2022

A213953 Triangle by rows, inverse of A208891.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, -2, 5, 0, -3, -1, 1, -9, 5, 10, -2, -4, -1, 1, -9, -21, 25, 15, -5, -5, -1, 1, 50, -105, -11, 62, 19, -9, -6, -1, 1, 267, -141, -301, 56, 119, 21, -14, -7, -1, 1, 413, 777
Offset: 0

Views

Author

Gary W. Adamson, Jun 26 2012

Keywords

Examples

			Triangle starts:
1;
-1, 1
0, -1, 1
1, -1, -1, 1;
1, 1, -2, -1, 1;
-2, 5, 0, -3, -1, 1;
-9, 5, 10, -2, -4, -1, 1;
-9, -21, 25, 15, -5, -5, -1, 1;
50, -105, -11, 62, 19, -9, -6, -1, 1;
267, -141, -301, 56, 119, 21, -14, -7, -1, 1;
413, 777, -1040, -566, 226, 198, 20, -20, -8, -1, 1;
...
		

Crossrefs

Cf. A208891, A000587 (first column), A014619 (2nd column), A080956 (4th subdiagonal).

Programs

  • Maple
    A208891 := proc(n,k)
        if n <0 or k<0 or k>n then
                0;
        elif n = k then
                1 ;
        else
                binomial(n-1,k) ;
        end if;
    end proc:
    A259456 := proc(n)
        local A, row, col ;
        A := Matrix(n, n) ;
        for row from 1 to n do
            for col from 1 to n do
                A[row, col] := A208891(row-1,col-1) ;
            end do:
        end do:
        LinearAlgebra[MatrixInverse](A) ;
    end proc:
    A259456(20) ; # R. J. Mathar, Jul 21 2015

Formula

Inverse of triangle A208891, Pascal's triangle matrix with an appended right border of 1's.
Showing 1-3 of 3 results.