A000276
Associated Stirling numbers.
Original entry on oeis.org
3, 20, 130, 924, 7308, 64224, 623376, 6636960, 76998240, 967524480, 13096736640, 190060335360, 2944310342400, 48503818137600, 846795372595200, 15618926924697600, 303517672703078400, 6198400928176128000, 132720966600284160000, 2973385109386137600000
Offset: 4
a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - _Geoffrey Critzer_, Nov 03 2012
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Shanzhen Gao, Permutations with Restricted Structure (in preparation).
-
nn=25;a=Log[1/(1-x)]-x;Drop[Range[0,nn]!CoefficientList[Series[a^2/2,{x,0,nn}],x],4] (* Geoffrey Critzer, Nov 03 2012 *)
a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* Jean-François Alcover, Feb 06 2016, after Gary Detlefs *)
-
a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ Michel Marcus, Feb 06 2016
A269940
Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0
Triangle T(n,k) starts:
[1]
[0, 1]
[0, 2, 3]
[0, 6, 20, 15]
[0, 24, 130, 210, 105]
[0, 120, 924, 2380, 2520, 945]
[0, 720, 7308, 26432, 44100, 34650, 10395]
[0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Anthony Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311, section 4.4.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Nico M. Temme, Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters, Integral Transforms and Special Functions, 2021.
- Nico M. Temme and Ed J. M. Veling, Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z, arXiv:2202.12857 [math.CA], 2022.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
-
T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k):
seq(print(seq(T(n, k), k=0..n)), n=0..6);
# Alternatively:
T := proc(n, k) option remember;
`if`(k=0, k^n,
`if`(k<=0 or k>n, 0,
(n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
-
T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
-
T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([T(n, k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
Name corrected after notice from Ed Veling by
Peter Luschny, Jun 14 2022
A213953
Triangle by rows, inverse of A208891.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, -2, 5, 0, -3, -1, 1, -9, 5, 10, -2, -4, -1, 1, -9, -21, 25, 15, -5, -5, -1, 1, 50, -105, -11, 62, 19, -9, -6, -1, 1, 267, -141, -301, 56, 119, 21, -14, -7, -1, 1, 413, 777
Offset: 0
Triangle starts:
1;
-1, 1
0, -1, 1
1, -1, -1, 1;
1, 1, -2, -1, 1;
-2, 5, 0, -3, -1, 1;
-9, 5, 10, -2, -4, -1, 1;
-9, -21, 25, 15, -5, -5, -1, 1;
50, -105, -11, 62, 19, -9, -6, -1, 1;
267, -141, -301, 56, 119, 21, -14, -7, -1, 1;
413, 777, -1040, -566, 226, 198, 20, -20, -8, -1, 1;
...
-
A208891 := proc(n,k)
if n <0 or k<0 or k>n then
0;
elif n = k then
1 ;
else
binomial(n-1,k) ;
end if;
end proc:
A259456 := proc(n)
local A, row, col ;
A := Matrix(n, n) ;
for row from 1 to n do
for col from 1 to n do
A[row, col] := A208891(row-1,col-1) ;
end do:
end do:
LinearAlgebra[MatrixInverse](A) ;
end proc:
A259456(20) ; # R. J. Mathar, Jul 21 2015
Showing 1-3 of 3 results.
Comments