A346208
Expansion of e.g.f.: exp(-3*x) / (2 - exp(x)).
Original entry on oeis.org
1, -2, 6, -14, 54, -62, 966, 4786, 71574, 875938, 12810726, 202739986, 3511712694, 65856494338, 1330170266886, 28785391689586, 664456856787414, 16296345814039138, 423191833100881446, 11600198414334789586, 334710974532291679734, 10140603124807778534338
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!(Laplace( Exp(-3*x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
-
nmax = 21; CoefficientList[Series[Exp[-3 x]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[HurwitzLerchPhi[1/2, -n, -3]/2, {n, 0, 21}]
a[n_] := a[n] = (-3)^n + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
-
def A346208_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-3*x)/(2-exp(x)) ).egf_to_ogf().list()
A346208_list(40) # G. C. Greubel, Jun 11 2024
A355220
a(n) = Sum_{k>=1} (4*k - 1)^n / 2^k.
Original entry on oeis.org
1, 7, 81, 1399, 32289, 931687, 32259441, 1303134679, 60160827969, 3124574220487, 180312309395601, 11445969681199159, 792626097462398049, 59462922484586318887, 4804064349575887075761, 415847988794676360818839, 38396277196654611908582529, 3766800071614388562865514887
Offset: 0
-
nmax = 17; CoefficientList[Series[Exp[3 x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A292915
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(2 - exp(x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 11, 26, 75, 1, 5, 18, 51, 150, 541, 1, 6, 27, 94, 299, 1082, 4683, 1, 7, 38, 161, 582, 2163, 9366, 47293, 1, 8, 51, 258, 1083, 4294, 18731, 94586, 545835, 1, 9, 66, 391, 1910, 8345, 37398, 189171, 1091670, 7087261, 1, 10, 83, 566, 3195, 15666, 74067, 378214, 2183339, 14174522, 102247563
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 3)*x^2/2! + (k^3 + 3*k^2 + 9*k + 13)*x^3/3! + (k^4 + 4*k^3 + 18*k^2 + 52*k + 75) x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
3, 6, 11, 18, 27, 38, ...
13, 26, 51, 94, 161, 258, ...
75, 150, 299, 582, 1083, 1910, ...
541, 1082, 2163, 4294, 8345, 15666, ...
-
R:=PowerSeriesRing(Rationals(), 50);
T:= func< n,k | Coefficient(R!(Laplace( Exp(k*x)/(2-Exp(x)) )), n) >;
A292915:= func< n,k | T(k,n-k) >;
[A292915(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; k^n +add(
binomial(n, j)*A(j, k), j=0..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 27 2017
-
Table[Function[k, n! SeriesCoefficient[Exp[k x]/(2 - Exp[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HurwitzLerchPhi[1/2, -n, k]/2][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
-
a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
A(n, k) = 2^k*a000670(n)-sum(j=0, k-1, 2^j*(k-1-j)^n); \\ Seiichi Manyama, Dec 25 2023
-
def T(n,k): return factorial(n)*( exp(k*x)/(2-exp(x)) ).series(x, n+1).list()[n]
def A292915(n,k): return T(k,n-k)
flatten([[A292915(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
A368317
Expansion of e.g.f. exp(4*x) / (2 - exp(x)).
Original entry on oeis.org
1, 5, 27, 161, 1083, 8345, 74067, 754241, 8726283, 113375465, 1635899907, 25961939921, 449464541883, 8429731963385, 170261482711347, 3684531041231201, 85050474868523883, 2085932272336772105, 54168554611721580387, 1484825397108091268081
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=4, t=1) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
Showing 1-4 of 4 results.
Comments