cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005337 Number of ways in which n identical balls can be distributed among 4 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.

Original entry on oeis.org

15, 40, 76, 124, 185, 260, 350, 456, 579, 720, 880, 1060, 1261, 1484, 1730, 2000, 2295, 2616, 2964, 3340, 3745, 4180, 4646, 5144, 5675, 6240, 6840, 7476, 8149, 8860, 9610, 10400, 11231, 12104, 13020, 13980, 14985
Offset: 8

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005338, A005339, A005340. A column of A259975.

Programs

  • Maple
    A005337:=(15-20*z+6*z**2)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(15 - 20 x + 6 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
    LinearRecurrence[{4,-6,4,-1},{15,40,76,124},50] (* Harvey P. Dale, May 11 2014 *)

Formula

G.f.: x^8*(15 - 20*x + 6*x^2)/(1 - x)^4.
a(n) = (546 - 169*n + 6*n^2 + n^3)/6. [Colin Barker, Jul 08 2012]

Extensions

G.f. corrected by Colin Barker, Jul 08 2012
Name clarified by Alois P. Heinz, Oct 02 2017

A257666 Number of ways of placing n balls into boxes 1,2,... in such a way that any two adjacent boxes contain at least 4 balls.

Original entry on oeis.org

1, 1, 1, 1, 7, 11, 17, 25, 51, 94, 165, 280, 496, 887, 1576, 2770, 4880, 8630, 15276, 26990, 47656, 84183, 148781, 262921, 464528, 820699, 1450091, 2562250, 4527272, 7999104, 14133456, 24972396, 44123768, 77962003, 137750326, 243390090, 430044755, 759843749
Offset: 0

Views

Author

Alois P. Heinz, Jul 12 2015

Keywords

Crossrefs

Rows sums of A259975.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1,3,3,1,0,-1,-1},{1,1,1,1,7,11,17,25,51,94},40] (* Harvey P. Dale, Jul 12 2019 *)

Formula

G.f.: -(x^9+x^8-2*x^6-3*x^5-2*x^4+x^3-x-1) / ((1+x) *(x^8 -x^5 -2*x^4 -x^3 -x+1)).
Showing 1-2 of 2 results.