cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005338 Number of ways in which n identical balls can be distributed among 5 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.

Original entry on oeis.org

1, 8, 31, 85, 190, 360, 610, 956, 1415, 2005, 2745, 3655, 4756, 6070, 7620, 9430, 11525, 13931, 16675, 19785, 23290, 27220, 31606, 36480, 41875, 47825, 54365, 61531, 69360, 77890, 87160, 97210, 108081, 119815, 132455, 146045, 160630
Offset: 8

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 8, 31, 85, 190, 360, 610]; [n le 7 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, May 11 2012
  • Mathematica
    f[x_] := x^8*(1 + 3*x + x^2 - 11*x^5 + 7*x^6)/(1 - x)^5; Drop[ CoefficientList[ Series[f[x], {x, 0, 44}], x], 8] (* Jean-François Alcover, Oct 05 2011, after Vladeta Jovovic *)
    LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190,360,610},40] (* Harvey P. Dale, Aug 26 2019 *)

Formula

G.f.: x^8*(1 + 3*x + x^2 - 11*x^5 + 7*x^6)/(1 - x)^5. - Vladeta Jovovic, Apr 13 2008
a(n) = (n^4 + 10*n^3 - 445*n^2 + 2690*n - 1656)/24 for n > 9. - Colin Barker, May 10 2012

Extensions

Corrected and extended by Vladeta Jovovic, Apr 13 2008
Name clarified by Alois P. Heinz, Oct 02 2017

A005340 Number of ways in which n identical balls can be distributed among 7 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.

Original entry on oeis.org

1, 13, 76, 295, 889, 2188, 4652, 8891, 15686, 26011, 41056, 62251, 91291, 130162, 181168, 246959, 330560, 435401, 565348, 724735, 918397, 1151704, 1430596, 1761619, 2151962, 2609495, 3142808, 3761251, 4474975, 5294974, 6233128
Offset: 12

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[x_] := x^12*(1 + 6*x + 6*x^2 + x^3 - 66*x^5 + 74*x^6 - 21*x^7)/(1-x)^7; Drop[ CoefficientList[ Series[f[x], {x, 0, 42}], x], 12] (* Jean-François Alcover, Oct 05 2011, after Vladeta Jovovic *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,13,76,295,889,2188,4652,8891},40] (* Harvey P. Dale, Apr 03 2025 *)

Formula

G.f.: x^12*(1 + 6*x + 6*x^2 + x^3 - 66*x^5 + 74*x^6 - 21*x^7)/(1-x)^7. - Vladeta Jovovic, Apr 13 2008

Extensions

More terms from Vladeta Jovovic, Apr 13 2008
Name clarified by Alois P. Heinz, Oct 02 2017

A005339 Number of ways in which n identical balls can be distributed among 6 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.

Original entry on oeis.org

35, 154, 424, 930, 1775, 3080, 4985, 7650, 11256, 16006, 22126, 29866, 39501, 51332, 65687, 82922, 103422, 127602, 155908, 188818, 226843, 270528, 320453, 377234, 441524, 514014, 595434, 686554, 788185, 901180, 1026435, 1164890, 1317530
Offset: 12

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^12(35-56x+25x^2-4x^3+x^6)/(1-x)^6, {x,0, 60}], x],12] (* or *) Join[{35},LinearRecurrence[{6,-15,20,-15,6,-1},{154,424,930,1775,3080,4985},48]] (* Harvey P. Dale, Aug 12 2011 *)

Formula

G.f.: x^12*(35 - 56*x + 25*x^2 - 4*x^3 + x^6)/(1-x)^6. - Vladeta Jovovic, Apr 13 2008
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), a(12)=35, a(13)=154, a(14)=424, a(15)=930, a(16)=1775, a(17)=3080, a(18)=4985. - Harvey P. Dale, Aug 12 2011

Extensions

More terms from Vladeta Jovovic, Apr 13 2008
Name clarified by Alois P. Heinz, Oct 02 2017

A259975 Irregular triangle read by rows: T(n,k) = number of ways of placing n balls into k boxes in such a way that any two adjacent boxes contain at least 4 balls.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 6, 4, 1, 7, 9, 1, 8, 16, 1, 9, 25, 15, 1, 1, 10, 35, 40, 8, 1, 11, 46, 76, 31, 1, 12, 58, 124, 85, 1, 13, 71, 185, 190, 35, 1, 1, 14, 85, 260, 360, 154, 13, 1, 15, 100, 350, 610, 424, 76, 1, 16, 116, 456, 956, 930, 295
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2015

Keywords

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,  5,   1;
  1,  6,   4;
  1,  7,   9;
  1,  8,  16;
  1,  9,  25,  15,   1;
  1, 10,  35,  40,   8;
  1, 11,  46,  76,  31;
  1, 12,  58, 124,  85;
  1, 13,  71, 185, 190,  35,  1;
  1, 14,  85, 260, 360, 154, 13;
  1, 15, 100, 350, 610, 424, 76;
  ...
		

Crossrefs

Row sums give A257666.

Programs

  • Maple
    b:= proc(n, v) option remember; expand(`if`(n=0,
          `if`(v=0, 1+x, 1), add(x*b(n-j, max(0, 4-j)), j=v..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 12 2015
  • Mathematica
    b[n_, v_] := b[n, v] = Expand[If[n == 0, If[v == 0, 1+x, 1], Sum[x*b[n-j, Max[0, 4-j]], {j, v, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jul 12 2015
Showing 1-4 of 4 results.