cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A260225 Primes having only {3, 5, 6} as digits.

Original entry on oeis.org

3, 5, 53, 353, 563, 653, 3533, 5333, 5563, 5653, 6353, 6553, 6563, 6653, 33353, 33533, 33563, 35353, 35363, 35533, 36353, 36563, 36653, 53353, 53633, 53653, 55333, 55633, 55663, 56333, 56533, 56633, 56663, 63353, 63533, 65353, 65563, 65633, 66533, 66553
Offset: 1

Views

Author

Vincenzo Librandi, Jul 21 2015

Keywords

Comments

A020462 is subsequence.

Crossrefs

Cf. similar sequences listed in A260223.
Cf. A020462.

Programs

  • Magma
    [p: p in PrimesUpTo(70000) | Set(Intseq(p)) subset [3, 5, 6]];
  • Mathematica
    Select[Prime[Range[3 10^4]], Complement[IntegerDigits[#], {3, 5, 6}]=={} &]
    Table[Select[FromDigits/@Tuples[{3,5,6},n],PrimeQ],{n,5}]//Flatten (* Harvey P. Dale, Jan 23 2018 *)

A260226 Primes having only {3, 5, 8} as digits.

Original entry on oeis.org

3, 5, 53, 83, 353, 383, 853, 883, 3533, 3583, 3833, 3853, 5333, 8353, 33353, 33533, 35353, 35533, 38333, 38833, 53353, 55333, 83383, 83833, 85333, 85853, 88853, 88883, 333383, 333533, 335383, 335833, 338383, 353333, 353833, 355853, 383533, 383833, 533353
Offset: 1

Views

Author

Vincenzo Librandi, Jul 22 2015

Keywords

Comments

A020462 and A020464 are subsequences.

Crossrefs

Cf. similar sequences listed in A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [3, 5, 8]];
  • Mathematica
    Select[Prime[Range[5 10^4]], Complement[IntegerDigits[#], {3, 5, 8}]=={} &]
    Select[Flatten[Table[FromDigits/@Tuples[{3,5,8},n],{n,6}]],PrimeQ] (* or  *) Join[{3,5},Select[10#+3&/@Flatten[Table[FromDigits/@Tuples[{3,5,8},n],{n,5}]],PrimeQ]] (* The second program is faster because it recognizes that, except only for 5, each such prime must end in 3. *) (* Harvey P. Dale, Jul 17 2020 *)

A260227 Primes having only {3, 5, 9} as digits.

Original entry on oeis.org

3, 5, 53, 59, 353, 359, 593, 599, 953, 3359, 3533, 3539, 3559, 3593, 5333, 5393, 5399, 5939, 5953, 9533, 9539, 33353, 33359, 33533, 33599, 35339, 35353, 35393, 35533, 35593, 35933, 35993, 35999, 39359, 39953, 53353, 53359, 53593, 53939, 53959, 53993
Offset: 1

Views

Author

Vincenzo Librandi, Jul 22 2015

Keywords

Comments

A020462 and A020468 are subsequences.

Crossrefs

Cf. similar sequences listed in A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [3, 5, 9]];
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {3, 5, 9}]=={} &]
    Select[Table[FromDigits/@Tuples[{3,5,9},n],{n,5}]//Flatten,PrimeQ] (* Harvey P. Dale, Sep 07 2018 *)

A260224 Primes having only {1, 3, 5} as digits.

Original entry on oeis.org

3, 5, 11, 13, 31, 53, 113, 131, 151, 311, 313, 331, 353, 1151, 1153, 1511, 1531, 1553, 3313, 3331, 3511, 3533, 5113, 5153, 5333, 5351, 5531, 11113, 11131, 11311, 11351, 11353, 11551, 13151, 13313, 13331, 13513, 13553, 15131, 15313, 15331, 15511, 15551
Offset: 1

Views

Author

Vincenzo Librandi, Jul 21 2015

Keywords

Crossrefs

Subsequence of A030096. A004022, A020451, A020453, and A020462 are subsequences.
Cf. similar sequences listed in A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(40000) | Set(Intseq(p)) subset [3, 5, 1]];
    
  • Mathematica
    Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {3, 5, 1}]=={} &]
    Select[Flatten[Table[FromDigits/@Tuples[{1,3,5},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Mar 03 2020 *)
  • Python
    from gmpy2 import is_prime, mpz
    from itertools import product
    A260224_list = [int(''.join(x)) for n in range(1,10) for x in product('135',repeat=n) if is_prime(mpz(''.join(x)))] # Chai Wah Wu, Jul 21 2015

A261434 Primes having only {0, 3, 8} as digits.

Original entry on oeis.org

3, 83, 383, 883, 3083, 3803, 3833, 8803, 30803, 33083, 38083, 38303, 38333, 38803, 38833, 80803, 80833, 83003, 83383, 83833, 88003, 88883, 303803, 308003, 308303, 308333, 308383, 330383, 333383, 333803, 338033, 338383, 338803, 380333, 380383, 380803, 383083
Offset: 1

Views

Author

Vincenzo Librandi, Aug 18 2015

Keywords

Comments

A020464 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (0,3,k): A260044 (k=1), A260125 (k=2), A199340 (k=4), A260223 (k=5), A260378 (k=7), this sequence (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0, 3, 8]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 3, 8}] == {} &]
    Select[FromDigits/@Tuples[{0,3,8},6],PrimeQ] (* Harvey P. Dale, Jul 10 2017 *)

A386056 Primes having only {0, 3, 4, 5} as digits.

Original entry on oeis.org

3, 5, 43, 53, 353, 433, 443, 503, 3343, 3433, 3533, 4003, 5003, 5303, 5333, 5443, 5503, 30403, 30553, 33053, 33343, 33353, 33403, 33503, 33533, 34033, 34303, 34403, 34543, 35053, 35353, 35533, 35543, 40343, 40433, 40543, 43003, 43403, 43543, 44053, 44453, 44533
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A199340, A199345, A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 5]];
    
  • Maple
    f:= n-> (l-> add([0, 3, 4, 5][l[j]+1]*10^(j-1), j=1..nops(l)))(convert(n, base, 4)):
    select(isprime, [seq(f(i), i=0..695)])[];  # Alois P. Heinz, Jul 15 2025
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 5}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0345"), 41))) # uses function/imports in A385776
    

A386061 Primes having only {0, 3, 5, 6} as digits.

Original entry on oeis.org

3, 5, 53, 353, 503, 563, 653, 3533, 5003, 5303, 5333, 5503, 5563, 5653, 6053, 6353, 6553, 6563, 6653, 30553, 33053, 33353, 33503, 33533, 33563, 35053, 35353, 35363, 35533, 35603, 36353, 36563, 36653, 50033, 50053, 50333, 50363, 50503, 53003, 53353, 53503, 53633
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A260223, A260225.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 5, 6]];
    
  • Mathematica
    Select[FromDigits/@Tuples[{0,3,5,6},5],PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 5, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0356"), 41))) # uses function/imports in A385776
    

Extensions

Mathematica program corrected by Harvey P. Dale, Aug 03 2025

A386062 Primes having only {0, 3, 5, 7} as digits.

Original entry on oeis.org

3, 5, 7, 37, 53, 73, 307, 337, 353, 373, 503, 557, 577, 733, 757, 773, 3037, 3307, 3373, 3533, 3557, 3733, 5003, 5077, 5303, 5333, 5503, 5507, 5557, 5573, 5737, 7057, 7307, 7333, 7507, 7537, 7573, 7577, 7703, 7753, 7757, 30307, 30553, 30557, 30577, 30703, 30707
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A087363, A260223, A260378, A260827.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 5, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 5, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0357"), 41))) # uses function/imports in A385776
    

A386063 Primes having only {0, 3, 5, 8} as digits.

Original entry on oeis.org

3, 5, 53, 83, 353, 383, 503, 853, 883, 3083, 3533, 3583, 3803, 3833, 3853, 5003, 5303, 5333, 5503, 8053, 8353, 8803, 30553, 30803, 30853, 33053, 33083, 33353, 33503, 33533, 35053, 35083, 35353, 35533, 35803, 38053, 38083, 38303, 38333, 38803, 38833, 50033, 50053
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A260223, A260226, A261434.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 5, 8]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 5, 8}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 5, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0358"), 41))) # uses function/imports in A385776
    

A386064 Primes having only {0, 3, 5, 9} as digits.

Original entry on oeis.org

3, 5, 53, 59, 353, 359, 503, 509, 593, 599, 953, 3359, 3533, 3539, 3559, 3593, 5003, 5009, 5039, 5059, 5099, 5303, 5309, 5333, 5393, 5399, 5503, 5903, 5939, 5953, 9059, 9533, 9539, 30059, 30509, 30539, 30553, 30559, 30593, 33053, 33353, 33359, 33503, 33533, 33599
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A260223, A260227, A385769.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 5, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 5, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0359"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 10 results.