cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A305854 Number of unlabeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 2, 10, 110, 14868, 1289830592
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			Non-isomorphic representatives of the a(3) = 10 spanning intersecting set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{3},{1,3},{2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305856(n) - A305856(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019
a(6) from Bert Dobbelaere, Apr 28 2025

A261005 Number of unlabeled simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0

Views

Author

N. J. A. Sloane, Aug 13 2015

Keywords

Comments

Also the number of non-isomorphic antichains of nonempty sets covering n vertices. The labeled case is A006126, except with a(0) = 1. - Gus Wiseman, Feb 23 2019

Examples

			From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(4) = 20 antichains:
  {}  {{1}}  {{12}}    {{123}}         {{1234}}
             {{1}{2}}  {{1}{23}}       {{1}{234}}
                       {{13}{23}}      {{12}{34}}
                       {{1}{2}{3}}     {{14}{234}}
                       {{12}{13}{23}}  {{1}{2}{34}}
                                       {{134}{234}}
                                       {{1}{24}{34}}
                                       {{1}{2}{3}{4}}
                                       {{13}{24}{34}}
                                       {{14}{24}{34}}
                                       {{13}{14}{234}}
                                       {{12}{134}{234}}
                                       {{1}{23}{24}{34}}
                                       {{124}{134}{234}}
                                       {{12}{13}{24}{34}}
                                       {{14}{23}{24}{34}}
                                       {{12}{13}{14}{234}}
                                       {{123}{124}{134}{234}}
                                       {{13}{14}{23}{24}{34}}
                                       {{12}{13}{14}{23}{24}{34}}
(End)
		

References

  • Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015.

Crossrefs

Apart from a(0), same as A006602, and after subtracting 1, A007411.

Formula

First differences of A306505. - Gus Wiseman, Feb 23 2019
a(n) = A003182(n) - A003182(n-1) for n > 0. - Andrew Howroyd, May 28 2023

Extensions

a(8)-a(9) added using A003182 by Andrew Howroyd, May 28 2023

A305857 Number of unlabeled intersecting antichains on up to n vertices.

Original entry on oeis.org

1, 2, 3, 6, 15, 87, 3528, 47174113
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other.

Examples

			Non-isomorphic representatives of the a(4) = 15 intersecting antichains:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Formula

a(n) = A305855(0) + A305855(1) + ... + A305855(n). - Brendan McKay, May 11 2020

Extensions

a(6) from Andrew Howroyd, Aug 13 2019
a(7) from Brendan McKay, May 11 2020

A304985 Number of labeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 40, 1344, 203136, 495598592, 309065330371840, 14369391920653644779049472
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 4 clutters:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Formula

For n > 1, a(n) = A048143(n) * 2^n.

A304982 Number of unlabeled clutters (connected antichains) spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 5, 19, 137, 3053, 822526
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

The initial terms 1, 2, 5, 19 are the same as A304981 but the remaining terms differ.

Examples

			Non-isomorphic representatives of the a(3) = 19 clutters:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{2},{1,2}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{2},{1,2}}
{{1,2},{1,3},{2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{3},{1,2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Partial sums of A304983.

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304983 Number of unlabeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 3, 14, 118, 2916, 819473
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 14 clutters:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{2},{3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Inverse Euler transform of A304997. - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304986 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n}, if clutters of the form {{x}} are allowed for any vertex x.

Original entry on oeis.org

1, 2, 4, 12, 115, 6834, 7783198, 2414627236078, 56130437209370100252471
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 12 clutters:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

a(n > 0) = A198085(n) + 1.
a(n) = A305005(n) + n.

A327426 Number of non-connected, unlabeled, antichain covers of {1..n} (vertex-connectivity 0).

Original entry on oeis.org

1, 1, 1, 2, 6, 23, 201, 16345
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. A singleton is not considered connected.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 23 antichains:
    {1}{2}  {1}{23}    {1}{234}         {1}{2345}
            {1}{2}{3}  {12}{34}         {12}{345}
                       {1}{2}{34}       {1}{2}{345}
                       {1}{24}{34}      {1}{23}{45}
                       {1}{2}{3}{4}     {12}{35}{45}
                       {1}{23}{24}{34}  {1}{25}{345}
                                        {1}{2}{3}{45}
                                        {1}{245}{345}
                                        {1}{2}{35}{45}
                                        {1}{2}{3}{4}{5}
                                        {1}{24}{35}{45}
                                        {1}{25}{35}{45}
                                        {12}{34}{35}{45}
                                        {1}{24}{25}{345}
                                        {1}{23}{245}{345}
                                        {1}{2}{34}{35}{45}
                                        {1}{235}{245}{345}
                                        {1}{23}{24}{35}{45}
                                        {1}{25}{34}{35}{45}
                                        {1}{23}{24}{25}{345}
                                        {1}{234}{235}{245}{345}
                                        {1}{24}{25}{34}{35}{45}
                                        {1}{23}{24}{25}{34}{35}{45}
		

Crossrefs

Column k = 0 of A327359.
The labeled version is A120338.
The non-covering version is A327424 (partial sums).

Formula

a(n > 1) = A261005(n) - A261006(n).

A304981 Number of unlabeled clutters (connected antichains) spanning up to n vertices without singleton edges.

Original entry on oeis.org

1, 1, 2, 5, 19, 176, 16118, 489996568
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 5 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
Non-isomorphic representatives of the a(4) = 19 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

Partial sums of A261006(n > 0).

A304984 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 56, 1533, 210302, 496838435, 309068803876372, 14369391923126181310256825
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(2) = 7 clutters:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304985(n > 0).
Showing 1-10 of 25 results. Next