cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107895 Euler transform of n!.

Original entry on oeis.org

1, 1, 3, 9, 36, 168, 961, 6403, 49302, 430190, 4199279, 45326013, 535867338, 6884000262, 95453970483, 1420538043009, 22579098396600, 381704267100888, 6837775526561031, 129377310771795789, 2578101967764973314, 53965231260126083854, 1183813954026245944519
Offset: 0

Views

Author

Thomas Wieder, May 26 2005

Keywords

Crossrefs

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1, add(add(d*p(d),d=numtheory[divisors](j)) *b(n-j),j=1..n)/n) end end:
    A107895 := EulerTrans(n->n!):  seq(A107895(n),n=0..20);
    # After Alois P. Heinz, A000335.  [Peter Luschny, Jul 07 2011]
  • Mathematica
    EulerTrans[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A107895 = EulerTrans[Factorial]; Table[A107895[n], {n, 0, 22}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 66/n^4 + 450/n^5 + 3679/n^6 + 35260/n^7 + 388511/n^8 + 4844584/n^9 + 67502450/n^10), for next coefficients see A248871. - Vaclav Kotesovec, Mar 14 2015
G.f.: Product_{n>=1} 1/(1-x^n)^(n!). - Vaclav Kotesovec, Aug 04 2015

A179327 G.f.: Product_{n>=1} 1/(1-x^n)^((n-1)!).

Original entry on oeis.org

1, 1, 2, 4, 11, 37, 167, 925, 6164, 47630, 418227, 4105887, 44529413, 528398441, 6807143686, 94588353184, 1409913624333, 22437692156739, 379673925360239, 6806484898946045, 128862141334488784, 2569079946351669286, 53797816061915662161, 1180533553597621952193
Offset: 0

Views

Author

Paul D. Hanna, Jan 08 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 37*x^5 + 167*x^6 +...
A(x) = 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)^6*(1-x^5)^24*(1-x^6)^120*...).
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 27*x^4/4 + 121*x^5/5 + 729*x^6/6 + 5041*x^7/7 + 40347*x^8/8 +...+ A062363(n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial((i-1)!+j-1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^((k-1)!),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d!)*x^m/m)+x*O(x^n)),n)}

Formula

Euler transform of (n-1)!.
G.f.: A(x) = exp( Sum_{n>=1} A062363(n)*x^n/n ) where A062363(n) = Sum_{d|n} d!.
a(n) ~ (n-1)! * (1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1860/n^6 + 14793/n^7 + 138166/n^8 + 1494034/n^9 + 18422609/n^10), for coefficients see A256126. - Vaclav Kotesovec, Mar 14 2015

A305867 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 4, 19, 130, 1120, 11960, 151595, 2230550, 37361755, 701873371, 14610774346, 333746628499, 8298025724194, 223049950124065, 6444634486214748, 199165237980655863, 6555102341516877027, 228905611339161301812, 8452656930719845696590, 329075775511339959533232, 13471099892869946627980017
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Euler transform of A001147.

Crossrefs

Programs

  • Maple
    N:= 25:
    S:=series(mul((1-x^k)^(-doublefactorial(2*k-1)),k=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Jun 12 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001147(k).
Showing 1-3 of 3 results.