cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A256126 Coefficients in asymptotic expansion of sequence A179327.

Original entry on oeis.org

1, 1, 3, 11, 50, 278, 1860, 14793, 138166, 1494034, 18422609, 255359957, 3929301362, 66412322717, 1222216175058, 24314268876147, 519701698551031, 11874016816562299, 288722141589331161, 7442890569982739838, 202733505298293899570, 5817564888930184685708
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 15 2015

Keywords

Examples

			A179327(n) / (n-1)! ~ 1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1860/n^6 + ...
		

Crossrefs

Formula

a(k) ~ (k-1)! / (log(2))^k.

A062363 a(n) = Sum_{d|n} d!.

Original entry on oeis.org

0, 1, 3, 7, 27, 121, 729, 5041, 40347, 362887, 3628923, 39916801, 479002353, 6227020801, 87178296243, 1307674368127, 20922789928347, 355687428096001, 6402373706091609, 121645100408832001, 2432902008180268947, 51090942171709445047, 1124000727777647596803
Offset: 0

Views

Author

Jason Earls, Jul 07 2001

Keywords

Examples

			The divisors of 3 are 1 and 3 so 1! + 3! = 7. The divisors of 4 are 1, 2 and 4 so 1! + 2! + 4! = 27.
		

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Sum[m!*x^m/(1-x^m),{m,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
    Join[{0},Table[Total[Divisors[n]!],{n,20}]] (* Harvey P. Dale, Aug 15 2024 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n, d, d!));

Formula

G.f.: Sum_{m>0} m!*x^m/(1-x^m). - Vladeta Jovovic, Aug 06 2004
Inverse Moebius transform of factorials (A000142). - Jonathan Vos Post, Mar 19 2006
a(n) ~ n!. - Vaclav Kotesovec, Mar 14 2015
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k-1)!)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018

A107895 Euler transform of n!.

Original entry on oeis.org

1, 1, 3, 9, 36, 168, 961, 6403, 49302, 430190, 4199279, 45326013, 535867338, 6884000262, 95453970483, 1420538043009, 22579098396600, 381704267100888, 6837775526561031, 129377310771795789, 2578101967764973314, 53965231260126083854, 1183813954026245944519
Offset: 0

Views

Author

Thomas Wieder, May 26 2005

Keywords

Crossrefs

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1, add(add(d*p(d),d=numtheory[divisors](j)) *b(n-j),j=1..n)/n) end end:
    A107895 := EulerTrans(n->n!):  seq(A107895(n),n=0..20);
    # After Alois P. Heinz, A000335.  [Peter Luschny, Jul 07 2011]
  • Mathematica
    EulerTrans[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A107895 = EulerTrans[Factorial]; Table[A107895[n], {n, 0, 22}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 66/n^4 + 450/n^5 + 3679/n^6 + 35260/n^7 + 388511/n^8 + 4844584/n^9 + 67502450/n^10), for next coefficients see A248871. - Vaclav Kotesovec, Mar 14 2015
G.f.: Product_{n>=1} 1/(1-x^n)^(n!). - Vaclav Kotesovec, Aug 04 2015

A261047 Euler transform of (n+1)!.

Original entry on oeis.org

1, 2, 9, 40, 212, 1248, 8400, 63576, 540858, 5132564, 53952742, 623324184, 7855144818, 107224120980, 1575511525794, 24784246515256, 415435624535225, 7389692971336602, 138992875726543381, 2755750468146310688, 57433108983590606292
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
         (d+1)!, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 28 2017
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^((k+1)!), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (n+1)! * (1 + 2/n + 7/n^2 + 33/n^3 + 219/n^4 + 1705/n^5 + 15707/n^6 + 166289/n^7 + 1993141/n^8 + 26727125/n^9 + 397081369/n^10).
a(n) ~ n! * n * (1 + 3/n + 9/n^2 + 40/n^3 + 252/n^4 + 1924/n^5 + 17412/n^6 + 181996/n^7 + 2159430/n^8 + 28720266/n^9 + 423808494/n^10).

A305867 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 4, 19, 130, 1120, 11960, 151595, 2230550, 37361755, 701873371, 14610774346, 333746628499, 8298025724194, 223049950124065, 6444634486214748, 199165237980655863, 6555102341516877027, 228905611339161301812, 8452656930719845696590, 329075775511339959533232, 13471099892869946627980017
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Euler transform of A001147.

Crossrefs

Programs

  • Maple
    N:= 25:
    S:=series(mul((1-x^k)^(-doublefactorial(2*k-1)),k=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Jun 12 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001147(k).

A321522 Expansion of Product_{k>=1} (1 + x^k)^((k-1)!).

Original entry on oeis.org

1, 1, 1, 3, 8, 32, 153, 883, 5980, 46660, 411861, 4057263, 44104688, 524243696, 6762188285, 94055795999, 1403061499362, 22342571084082, 378257158227079, 6783952072695685, 128481050502464062, 2562250926987454694, 53668572808754641369, 1177957644341460946099
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial((i-1)!, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + x^k)^((k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 23}]

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d! ) * x^k/k).
a(n) ~ (n-1)! * (1 + 1/n + 2/n^2 + 7/n^3 + 34/n^4 + 203/n^5 + 1455/n^6 + 12343/n^7 + 121636/n^8 + 1368647/n^9 + 17343274/n^10 + ...). - Vaclav Kotesovec, Nov 13 2018
Showing 1-6 of 6 results.