cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261139 S'_t(n) is the number of set partitions of {1,2,...,t} into exactly n parts such that no part contains both 1 and t or both i and i+1 for some i with 1 <= i < t; triangle S'_t(n), t >= 0, 0 <= n <= t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 5, 5, 1, 0, 0, 1, 10, 20, 9, 1, 0, 0, 0, 21, 70, 56, 14, 1, 0, 0, 1, 42, 231, 294, 126, 20, 1, 0, 0, 0, 85, 735, 1407, 924, 246, 27, 1, 0, 0, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0

Views

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

S'A261137%20may%20be%20defined%20by%20B'_t(n)%20=%20Sum">t(n) is the number of sequences of t non-identity top-to-random shuffles of a deck of n cards that move each card at some time, and overall leave the deck invariant. (See link below.) A261137 may be defined by B'_t(n) = Sum{m=0..n} S'_t(m).

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  2,   1;
  0, 0, 0,  5,   5,    1;
  0, 0, 1, 10,  20,    9,   1;
  0, 0, 0, 21,  70,   56,  14,   1;
  0, 0, 1, 42, 231,  294, 126,  20,  1;
  0, 0, 0, 85, 735, 1407, 924, 246, 27,  1;
  ...
		

Crossrefs

Columns n=3,4 give: A000975, A243869.
Row sums give A000296.
Cf. A261137.
The same as A105794, except for the first two columns.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    S:= t-> (p-> seq(coeff(p, x, i), i=0..t))(g(t, 0$2)):
    seq(S(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}]; T[0, 0] = 1; T[, 0] = T[, 1] = 0; T[n_, k_] := SeriesCoefficient[ StirPrimedGF[k, x], {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* script completed by Jean-François Alcover, Jan 31 2016 *)
  • PARI
    a(n,k)=if(k==0, n==0, sum(j=0, k, binomial(k, j) * (-1)^(k-j) * ((j-1)^n + (-1)^n * (j-1))) / k!);
    for(n=0, 10, for(k=0, n, print1( a(n, k), ", "); ); print(); ); \\ Andrew Howroyd, Apr 08 2017

Formula

G.f. for column n > 1: x^n/((1+x)*Product_{j=1..n-1} (1-j*x)).
S'_t(n) ~ (n-1)^t/n! as t tends to infinity.
Recurrence: S't(n) = S'{t-1}(n-1) + (n-1)*S'_{t-1}(n) for n >= 3.
S't(n) = (1/n!) * Sum{j=0..n} (-1)^(n-j) * binomial(n, j) * ((j-1)^t + (-1)^t * (j-1)) for t>0. - Andrew Howroyd, Apr 08 2017
Sum_{n=0..t} (n-1)*S'{t-1}(n) + n*S'{t-2}(n) = A000296(t) for t >= 3. - Yuchun Ji, Feb 23 2021
T(m, k) = Sum_{i=k..m} Stirling2(i-1, k-1)*(-1)^(i+m), for k >= 2. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024
T(m, k) = (Sum_{i=0..m} Stirling2(i, k)*binomial(m,i)*(-1)^(m-i))*I(m,k), where I(m,k) = (1-Sum_{i=0..m} Stirling1(k, i))^(m+k) for k >= 0. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, Jun 01 2024