A261139 S'_t(n) is the number of set partitions of {1,2,...,t} into exactly n parts such that no part contains both 1 and t or both i and i+1 for some i with 1 <= i < t; triangle S'_t(n), t >= 0, 0 <= n <= t, read by rows.
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 5, 5, 1, 0, 0, 1, 10, 20, 9, 1, 0, 0, 0, 21, 70, 56, 14, 1, 0, 0, 1, 42, 231, 294, 126, 20, 1, 0, 0, 0, 85, 735, 1407, 924, 246, 27, 1, 0, 0, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0
Examples
Triangle starts: 1; 0, 0; 0, 0, 1; 0, 0, 0, 1; 0, 0, 1, 2, 1; 0, 0, 0, 5, 5, 1; 0, 0, 1, 10, 20, 9, 1; 0, 0, 0, 21, 70, 56, 14, 1; 0, 0, 1, 42, 231, 294, 126, 20, 1; 0, 0, 0, 85, 735, 1407, 924, 246, 27, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
- D. E. Knuth and O. P. Lossers, Partitions of a circular set, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.
- Sophie Morier-Genoud, Counting Coxeter's friezes over a finite field via moduli spaces, arXiv:1907.12790 [math.CO], 2019.
- Augustine O. Munagi, Two Applications of the Bijection on Fibonacci Set Partitions, Fibonacci Quart. 55 (2017), no. 5, 144-148. See c(n,k) p. 145 giving shifted triangle.
Crossrefs
Programs
-
Maple
g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h), add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1)) end: S:= t-> (p-> seq(coeff(p, x, i), i=0..t))(g(t, 0$2)): seq(S(t), t=0..12); # Alois P. Heinz, Aug 10 2015
-
Mathematica
StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}]; T[0, 0] = 1; T[, 0] = T[, 1] = 0; T[n_, k_] := SeriesCoefficient[ StirPrimedGF[k, x], {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* script completed by Jean-François Alcover, Jan 31 2016 *)
-
PARI
a(n,k)=if(k==0, n==0, sum(j=0, k, binomial(k, j) * (-1)^(k-j) * ((j-1)^n + (-1)^n * (j-1))) / k!); for(n=0, 10, for(k=0, n, print1( a(n, k), ", "); ); print(); ); \\ Andrew Howroyd, Apr 08 2017
Formula
G.f. for column n > 1: x^n/((1+x)*Product_{j=1..n-1} (1-j*x)).
S'_t(n) ~ (n-1)^t/n! as t tends to infinity.
Recurrence: S't(n) = S'{t-1}(n-1) + (n-1)*S'_{t-1}(n) for n >= 3.
S't(n) = (1/n!) * Sum{j=0..n} (-1)^(n-j) * binomial(n, j) * ((j-1)^t + (-1)^t * (j-1)) for t>0. - Andrew Howroyd, Apr 08 2017
T(m, k) = Sum_{i=k..m} Stirling2(i-1, k-1)*(-1)^(i+m), for k >= 2. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024
T(m, k) = (Sum_{i=0..m} Stirling2(i, k)*binomial(m,i)*(-1)^(m-i))*I(m,k), where I(m,k) = (1-Sum_{i=0..m} Stirling1(k, i))^(m+k) for k >= 0. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, Jun 01 2024
Comments