cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A186253 Indices of zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),n-1)), u(1)=1.

Original entry on oeis.org

2, 5, 11, 23, 47, 79, 157, 313, 619, 1237, 2473, 4909, 9817, 19603, 39199, 78193, 156019, 311347, 622669, 1244149, 2487739, 4975111, 9950221, 19900399, 39800797, 79601461, 159202369, 318404629, 636788881, 1273577761, 2547155419, 5094310069, 10188620041
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=1 it appears a(n) is prime for n>=1.
See A261301 for the sequence u relevant here (m=1). - M. F. Hasler, Aug 14 2015
A261301(a(n)-1) = 1; A261301(a(n)) = 0; A261301(a(n)+1) = a(n). - Reinhard Zumkeller, Sep 07 2015

Crossrefs

Programs

  • Haskell
    a186253 n = a186253_list !! (n-1)
    a186253_list = filter ((== 0) . a261301) [1..]
    -- Reinhard Zumkeller, Sep 07 2015
  • Mathematica
    a = m = 1; Reap[For[n = 2, n <= 10^7, n++, a = Abs[a - GCD[a, m*n - 1]]; If[a == 0, Print[m*n + m - 1]; Sow[m*n + m - 1]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2019, from PARI *)
    nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,n]]}; Position[NestList[nxt,{1,1},13*10^5][[All,2]],0]// Flatten (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Oct 02 2022 *)
  • PARI
    a=1;m=1;for(n=2,1e7,a=abs(a-gcd(a,m*n-1));if(a==0,print1(m*n+m-1,",")))
    
  • PARI
    next_a(last_a) = {
      local(A=last_a,B=last_a,C=2*last_a+1);
      while(A>0,
        D=divisors(C);
        k1=10*D[2];
        for(j=2,#D, d=D[j];k=((A+1-B+d)/2)%d;
          if(k==0,k=d); if(k<=k1,k1=k;d1=d));
        if(k1-1+d1==A,B=B+1);
        A = max(A-(k1-1)-d1,0);
        B = B + k1;
        C = C - (d1 - 1);
      );
      return(B);
    }
    a=2
    for(n=1,99,print1(a,", ");a=next_a(a)) \\ Jan Büthe and Moritz Firsching, Aug 04 2015
    
  • PARI
    m=a=k=1; for(n=1, 30, while( a>d=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[,1])), a-=d+gcd(a-d,N); k+=1+d); k+=a+1; print1(a=N,",")) \\ M. F. Hasler, Aug 22 2015
    

Formula

Conjecture: a(n) is asymptotic to c*2^n with c = 1.1861...

Extensions

Definition clarified by M. F. Hasler, Aug 14 2015

A186263 a(n) = 10*b_10(n) + 9, where b_10 lists the indices of zeros of the sequence A261310: u(n) = abs(u(n-1) - gcd(u(n-1), 10n-1)), u(1) = 1.

Original entry on oeis.org

29, 269, 2969, 32609, 357169, 3928669, 43213789, 475113649, 5226205969, 57488152069, 632360271769, 6955957188049, 76515529068529, 841670819753809, 9258379017291889, 101842168949117209, 1120263858440288929, 12322902442843176229, 135551926871245562989
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=10 it appears a(n) is prime for n>=1.
See A261310 for the sequence u relevant here (m=10). - M. F. Hasler, Aug 14 2015

Crossrefs

Programs

  • PARI
    a=1; m=10; for(n=2, 1e7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))
    
  • PARI
    m=10; a=k=1; for(n=1, 20, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015

Formula

We conjecture that a(n) is asymptotic to c*11^n with c>0.
See the wiki link for a sketch of a proof of this conjecture. We find c = 2.2163823215... - M. F. Hasler, Aug 22 2015

Extensions

Edited by M. F. Hasler, Aug 14 2015
More terms from M. F. Hasler, Aug 22 2015

A261310 a(n+1) = abs(a(n) - gcd(a(n), 10n+9)), a(1) = 1.

Original entry on oeis.org

1, 0, 29, 28, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 269, 268, 267, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229
Offset: 1

Views

Author

M. F. Hasler, Aug 14 2015

Keywords

Comments

The absolute value is relevant only when a(n) = 0 in which case a(n+1) = gcd(a(n),10n+9) = 10n+9.
It is conjectured that for all n, a(n) = 0 implies that a(n+1) = 10n+9 is prime, cf. A186263.

Examples

			a(2) = a(1) - gcd(a(1),10+9) = 1 - 1 = 0.
a(3) = |a(2) - gcd(a(2),10*2+9)| = gcd(0,29) = 29 is prime.
a(4) = 28 and 10*4+9 = 49, thus a(5) = 28 - gcd(28,49) = 28 - 7 = 21. Note that for n = 4+32, 10n+9 = 329 is divisible by 7, but for n = 5+21 = 26, 10n+9 = 269 = a(27) is prime. Also, for n = 27+269 = 296, 10n+9 = 2969 = a(297) is prime again.
		

Crossrefs

Programs

  • PARI
    print1(a=1);for(n=1,99,print1(",",a=abs(a-gcd(a,10*n+9))))

A261302 a(n+1) = abs(a(n) - gcd(a(n), 2n+1)), a(1) = 1.

Original entry on oeis.org

1, 0, 5, 4, 3, 2, 1, 0, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 53, 52, 51, 50, 49, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 149, 148, 147, 146, 145, 144, 143
Offset: 1

Views

Author

M. F. Hasler, Aug 14 2015

Keywords

Comments

The absolute value is relevant only when a(n) = 0, in which case a(n+1) = gcd(a(n), 2n+1) = 2n+1.
It is conjectured that for all n, a(n) = 0 implies that 2n+1 = a(n+1) is prime, cf. A186254. (This is the sequence {u(n)} mentioned there.)

Examples

			For n = 1, a(n) = 1 therefore a(n+1) = a(n) - gcd(a(n),2*n+1) = 1 - 1 = 0. The same is true for n = 7.
a(2) = 0 therefore a(3) = gcd(0,2*2+1) = 5, which is prime.
a(3+5) = a(8) = 0 therefore a(9) = gcd(0,2*8+1) = 17, which is also prime.
a(9+17) = a(26) = 0 therefore a(27) = gcd(0,2*26+1) = 53, which is also prime.
a(31) = 49 and 2*31+1 = 63, therefore a(32) = 49 - gcd(49,63) = 49 - 7 = 42. Note that for n = 31+49 = 80, 2n+1 = 161 would not be prime, but for n = 32+42 = 74, 2n+1 = 149 = a(75) is prime.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,2n+1]]}; NestList[nxt,{1,1},80][[All,2]] (* Harvey P. Dale, Jan 17 2023 *)
  • PARI
    print1(a=1);for(n=1,99,print1(",",a=abs(a-gcd(a,2*n+1))))

A186254 a(n) = 2*b(n)+1, where b(n) lists the zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),2*n-1)), u(1)=1.

Original entry on oeis.org

5, 17, 53, 149, 449, 1289, 3761, 11261, 33773, 101117, 302681, 907757, 2723069, 8169137, 24506597, 73519793, 220559369, 661677761, 1985001917, 5955003077, 17865008333, 53595020201, 160785060361, 482355180761, 1447065541373, 4341196624109, 13023589872329
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for all k large enough, m*b_m(k)+m-1 is a prime number. Here for m=2 it appears a(n) is prime for n>=1.
See A261302 for the sequence u relevant here (m=2). - M. F. Hasler, Aug 14 2015

Crossrefs

Programs

  • PARI
    a=1; m=2; for(n=2, 9e9, if(!a=abs(a-gcd(a, m*n-1)), print1(m*n+m-1, ", ")))
    
  • PARI
    m=2; a=k=1; for(n=1, 30, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015

Formula

a(n+1) <= 3*a(n)+2 for all n.- See the wiki link for a sketch of a proof that a(n) ~ c*3^n with c = 1.7078779... - M. F. Hasler, Aug 22 2015

Extensions

More terms from M. F. Hasler, Aug 22 2015

A186256 a(n) = 4*b_4(n)+3, where b_4 lists the indices of zeros of the sequence A261304: u(n) = abs(u(n-1)-gcd(u(n-1),4*n-1)), u(1) = 1.

Original entry on oeis.org

11, 59, 251, 1259, 6299, 31387, 152083, 758971, 3790651, 18953251, 94766251, 473831251, 2369156107, 11845755043, 59228775043, 296143874947, 1480718773123, 7403593861843, 37017965808931, 185089757395379, 925448786976163, 4627243883546971, 23136219387534283
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=4 it appears a(n) is prime for n>=1.
See A261304 for the sequence u relevant here (m=4). - M. F. Hasler, Aug 14 2015

Crossrefs

Programs

  • PARI
    a=1; m=4; for(n=2, 1e7,a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))
    
  • PARI
    m=4; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015

Formula

We conjecture that a(n) is asymptotic to c*5^n with c=1.9408...
See the wiki link for a sketch of a proof of this conjecture. We can give more decimals of c = 1.94080675... - M. F. Hasler, Aug 22 2015

Extensions

More terms from M. F. Hasler, Aug 22 2015

A186261 a(n) = 9*b_9(n) + 8, where b_9 lists the indices of zeros of the sequence A261309: u(n) = abs(u(n-1) - gcd(u(n-1), 9n-1)), u(1) = 1.

Original entry on oeis.org

26, 269, 2699, 26423, 259829, 2595473, 25954289, 259491059, 2594910599, 25949104721, 259491047219, 2594905133453, 25949039883929, 259490398799609, 2594903521711517, 25949035214699921, 259490352146949701, 2594903520789157301, 25949035207891572929, 259490352078915446897
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=9 it appears a(n) is prime for n>=2.
See A261309 for the sequence u relevant here (m=9). - M. F. Hasler, Aug 14 2015

Crossrefs

Programs

  • PARI
    a=1; m=9; for(n=2, 1e8, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))
    
  • PARI
    m=9;a=0;k=2; for(n=1,20,while(1<#(f=factor(N=m*(k+a)+m-1)[,1]) && a, k+=1+D=vecmin(apply(p->a%p,f)); a-=D+gcd(a-D,N));k+=a+1;print1(a=N,",")) \\ M. F. Hasler, Aug 22 2015

Formula

We conjecture that a(n) is asymptotic to c*10^n with c>0.
See the wiki link for a sketch of a proof of this conjecture. We find c=2.59490352... - M. F. Hasler, Aug 22 2015

Extensions

Edited by M. F. Hasler, Aug 14 2015

A261307 a(n+1) = abs(a(n) - gcd(a(n), 7*n+6)), a(1) = 1.

Original entry on oeis.org

1, 0, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35
Offset: 1

Views

Author

M. F. Hasler, Aug 14 2015

Keywords

Comments

It is conjectured that for all n > 2, a(n) = 0 implies that 7n+6 = a(n+1) is prime, cf. A186259. (This is the sequence {u(n)} mentioned there.)

Examples

			a(2) = a(1) - gcd(a(1),7+6) = 1 - 1 = 0.
a(3) = |a(2) - gcd(a(2),7*2+6)| = gcd(0,17) = 17 is prime.
a(33) = 158, thus a(6) = 158 - gcd(158,7*33+6) = 158 - 79 = 79.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,7n+6]]}; NestList[nxt,{1,1},80][[All,2]] (* Harvey P. Dale, Apr 26 2017 *)
  • PARI
    print1(a=1);for(n=1,99,print1(",",a=abs(a-gcd(a,7*n+6))))

A261309 a(n+1) = abs(a(n) - gcd(a(n), 9n+8)), u(1) = 1.

Original entry on oeis.org

1, 0, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 269, 268, 267, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231
Offset: 1

Views

Author

M. F. Hasler, Aug 14 2015

Keywords

Comments

It is conjectured that for all n > 2, u(n) = 0 implies that u(n+1) = 9n+8 is prime, cf. A186261. (This is the sequence {u(n)} mentioned there.)

Examples

			a(2) = a(1) - gcd(a(1),9+8) = 1 - 1 = 0.
a(3) = |a(2) - gcd(a(2),9*2+8)| = gcd(0,26) = 26.
a(3+26) = a(29) = 0 and a(29+1) = gcd(0,9*29+8) = 269 is prime.
		

Crossrefs

Programs

  • PARI
    print1(a=1);for(n=1,99,print1(",",a=abs(a-gcd(a,9*n+8))))

A186255 a(n) = 3*b_3(n)+2, where b_3 lists the zeros of the sequence A261303: u(n+1)=abs(u(n)-gcd(u(n),3*n+2)), u(1)=1.

Original entry on oeis.org

8, 17, 71, 269, 1013, 4007, 15923, 63521, 253949, 1014317, 4056893, 16225589, 64902359, 259609439, 1038437759, 4153750883, 16614561281, 66458241569, 265832966279, 1063331407109, 4253325628439, 17013302513759, 68053207705097, 272212800371669, 1088851201483883
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=3 it appears a(n) is prime for n>=2.
See A261303 for the sequence u relevant here (m=3). - M. F. Hasler, Aug 14 2015

Crossrefs

Programs

  • PARI
    a=1; m=3; for(n=2, 10^7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))
    
  • PARI
    m=3; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ M. F. Hasler, Aug 22 2015

Formula

We conjecture that a(n) is asymptotic to c*4^n with c=0.96...
See the wiki link for a sketch of a proof that this is true. We can give more decimals of c = 0.967094... - M. F. Hasler, Aug 22 2015

Extensions

More terms from M. F. Hasler, Aug 22 2015
Showing 1-10 of 20 results. Next