A261343 50-gonal numbers: a(n) = 48*n*(n-1)/2 + n.
0, 1, 50, 147, 292, 485, 726, 1015, 1352, 1737, 2170, 2651, 3180, 3757, 4382, 5055, 5776, 6545, 7362, 8227, 9140, 10101, 11110, 12167, 13272, 14425, 15626, 16875, 18172, 19517, 20910, 22351, 23840, 25377, 26962, 28595, 30276, 32005, 33782, 35607, 37480
Offset: 0
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
JavaScript
function a(n){return 48*n*(n-1)/2+n}
-
Magma
[n*(24*n-23): n in [0..40]]; // Vincenzo Librandi, Aug 17 2015
-
Maple
A261343:=n->n*(24*n-23): seq(A261343(n), n=0..40); # Wesley Ivan Hurt, Aug 20 2015
-
Mathematica
PolygonalNumber[50,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2019 *)
-
PARI
first(m)=vector(m,n,n--;n*(24*n-23)) \\ Anders Hellström, Aug 15 2015
Formula
a(n) = n*(24*n - 23).
G.f.: x*(1+47*x)/(1-x)^3. - Vincenzo Librandi, Aug 17 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Aug 17 2015
E.g.f.: exp(x)*(x + 24*x^2). - Nikolaos Pantelidis, Feb 10 2023
Comments