cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261343 50-gonal numbers: a(n) = 48*n*(n-1)/2 + n.

Original entry on oeis.org

0, 1, 50, 147, 292, 485, 726, 1015, 1352, 1737, 2170, 2651, 3180, 3757, 4382, 5055, 5776, 6545, 7362, 8227, 9140, 10101, 11110, 12167, 13272, 14425, 15626, 16875, 18172, 19517, 20910, 22351, 23840, 25377, 26962, 28595, 30276, 32005, 33782, 35607, 37480
Offset: 0

Views

Author

Sergey Pavlov, Aug 15 2015

Keywords

Comments

According to the common formula for the polygonal numbers: (s-2)*n*(n-1)/2 + n (here s = 50).
96*a(n) + 23^2 is a square.

Crossrefs

Programs

  • JavaScript
    function a(n){return 48*n*(n-1)/2+n}
    
  • Magma
    [n*(24*n-23): n in [0..40]]; // Vincenzo Librandi, Aug 17 2015
  • Maple
    A261343:=n->n*(24*n-23): seq(A261343(n), n=0..40); # Wesley Ivan Hurt, Aug 20 2015
  • Mathematica
    PolygonalNumber[50,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2019 *)
  • PARI
    first(m)=vector(m,n,n--;n*(24*n-23)) \\ Anders Hellström, Aug 15 2015
    

Formula

a(n) = n*(24*n - 23).
G.f.: x*(1+47*x)/(1-x)^3. - Vincenzo Librandi, Aug 17 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Aug 17 2015
E.g.f.: exp(x)*(x + 24*x^2). - Nikolaos Pantelidis, Feb 10 2023